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Outline
• Devices to avoid transverse shear ‘‘locking’’ of flexural (structural) 

elements
 Mixed formulations
 Reduced integration
 ANS ─ Assumed Natural Coordinate Strains (based on a three-field

formulation)

• Devices to overcome shear ‘‘locking’’ in continuum elements
 Selective Reduced Integration (SRI)
 Incompatible elements
 EAS ─ Enhanced Assumed Strains (based on a three-field Hu-Washizu

formulation)

Geilo 2012



3

‘‘Locking’’ of flexural elements
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Idealization
• In general the domain is considered to be a continuum, a rigid multibody

system or a set of discrete elements.

• In continuum problems FE approximations are based on approximation 
of the displacement, stress and strain fields at each material point in the 
domain.

• Even though the continuum approach is general, for structural mechanics 
problems, there are many instances where it is difficult or impossible to 
obtain viable solutions economically.

• If one or two dimensions of the domain are small compared to the 
others, the FE approximations for structural mechanics problems may 
often be better understood from a physical (structural mechanics), rather 
than mathematical, standpoint.
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1D elements
• If the longitudinal or axial dimension is much larger than the other two 

dimensions (known as transverse dimensions), the element may be 
parameterized as a one-dimensional (1D) or line element.

• Although the intrinsic dimensionality is                                                          
one, line elements may be used in                                                                      
one, two or three space dimensions
upon transformation to global coordinates.

• We distinguish between two main                                                      
categories of 1D elements:
 Bar elements ─ resist axial force along                                                                    

its longitudinal axis

 Beam elements ─ resist axial force,                                                                       
bending moments,                                                       
transverse shear 
forces, and torsion            
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1D elements cont.
• Bar elements are used to model trusses, cables, chains and ropes.

• In principle a bar element is a 1D continuum element. 

• In contrast to the bar that can only resist axial                                              
stretching or compression, a beam resists                                   
transverse loads mainly through bending action.

• Bending produces compressive longitudinal stresses                                    
on one side and tensile stresses on the opposite side.

• If attempting to model a beam with a standard 3D FE                               
model there are two aspects which may cause difficulty:
 One is purely numerical and associated with large round-off

errors when attempting to solve the simultaneous equations.
 The other is a form of ‘‘locking’’ in interactions between bending,                                   

shear and axial behavior when low-order elements are used.
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1D elements cont.
• 1D mathematical models of structural beams are constructed on the

basis of beam theories.

• Because beams are actually 3D bodies, all models necessarily involve some 
form of approximation to the underlying physics.

• This is achieved by “filtering out” physical details that are not relevant to 
the analysis process.

• For example, a continuum material model filters out the aggregate, crystal, 
molecular and atomic levels of matter.

• Engineers are typically interested in a few integrated quantities, such as 
maximum deflection and maximum bending moments.

• Consequently, picking a mathematical model                                                  
is equivalent to choosing an information filter.
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2D elements
• When one dimension is small compared to the other two dimensions the 

element may be parameterized as a two-dimensional (2D) or surface 
element.

• We distinguish between two main categories of 2D elements:
 Plate element ─  if the surface is initially flat, and 

 Shell element ─  if the surface is curved

• If the plate/shell element is subjected to 
transverse loading the analyst must 
choose which plate theory to apply:
 Thick: t / L > 1/3 ─ 3D continuum theory

 Moderately thick: 1/3 > t / L > 1/10 ─ Mindlin plate theory

 Thin:                        1/10 > t / L ─ Kirchhoff plate theory
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Beam models
• FE modeling of beams are usually based on:

 Euler-Bernoulli (EB) beam theory ─  also called classical or engineering beam theory

 Timoshenko beam theory ─  also called Mindlin-Reissner beam theory

• Mathematically, the main difference is that the EB beam requires increased 
order of continuity compared to the Timoshenko beam.

• The application of the EB theory is usually restricted to situations where 
dimensions along the axis of the beam are at least ten times those of the 
transverse (cross-section) dimensions: t / L  <  1/10

• In contrast to the EB theory, the Timoshenko theory includes          
transverse shear deformations and is applicable when the                                       
length to cross-section dimensions are above five (when                              
smaller the continuum theory becomes viable) : t / L  <  1/5
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Interpretation of C1-continuity
(deflections grossly exaggerated for visibility)                                

Piecewise cubic interpolation              Piecewise linear interpolation        
provides required C1 - continuity       gives unacceptable C1 - continuity            
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Basics ─ plane EB beam
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Weak form ─ plane EB beam
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FE approx. ─ plane EB beam
To meet the C1-continuity requirement, Hermitian cubic shape functions are 
used to approximate the transverse displacements:
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Example ─ plane EB beam
• Cantilever beam problem discretized with one single EB beam element:

• Since the STRONG FORM solution for the transverse displacement v for 
load cases I and II are quadratic  and cubic polynomials in x, respectively, 
they are both included in the span of the element shape functions ۼ௘

The FE solution coincide with the analytical 
solution for load cases I and II, respectively. 
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Example ─ plane EB beam

• The results for load case III are more interesting since now the exact 
deflection is a quartic polynomial in x, which lies beyond the span of ۼ௘

• The FE solution for the normalized transverse displacement, section rotation 
and bending moment are compared to the SF analytical solution. 

• In the above figures, ߚ ൌ 1 corresponds to FE solution obtained with 
consistent load vectors.

• While the transverse displacement and section rotation                          
compares very well, the bending moment gives a linear fit to                         
the parabolic function corresponding to the SF solution to M.                        
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Basics ─ Timoshenko beam
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Weak form ─ Timoshenko beam

• Since the highest derivatives of transverse displacement v and section rotation θ in the 
weak form are only first order, both fields may be interpolated by C0 functions.

• Use of an equal-order interpolation the transverse displacement and section rotation is 
expressed as:
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Example ─ Timoshenko beam
• Uniformly loaded cantilever beam discretized with 

20 linear elements with equal-order interpolation.

• FE results are obtained with full integration       
(2-point Gauss quadrature) and reduced
integration (1-point quadrature).

• vT /vEB denote ratio of tip displacement                    
for Timoshenko beam theory to that                       
of EB beam theory.

• The use of full integration leads to a             
solution which locks as the beam             
becomes slender, whereas reduced           
integration shows no locking for the                 
range plotted.

• This example demonstrate the main           
deficiency of low-order/equal-order C0

interpolation of Timoshenko beam elements.
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Devices to alleviate ‘‘locking’’
• As demonstrated in the example, use of Timoshenko theory can lead to 

locking effects when the theory is applied to cases where the EB theory   
also could be used.

• However, it is desirable to have a single formulation which remains valid 
throughout the range of length to cross-section considerations and for this 
the Timoshenko theory should be used.

• How can FE approximations which are free from transverse shear locking be 
developed for the Timoshenko beam as well as plate and shell elements 
based on Mindlin plate theory.

• As demonstrated in the example, one device is to apply reduced 
integration, a more general approach is to apply a mixed formulation.
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Mixed form ─ Timoshenko beam 
• In the sequel a three-field Hu-Washizu variational form will be used to 

construct mixed FE approximations for the Timoshenko beam theory.

• The three-field weak form involves two displacement components, v and θ, 
two forces, V and M, and two strains, γ and κ, as given by:

• To obtain exact interelement nodal displacements for the mixed formulation
we let:
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Mixed form ─ Timoshenko beam 
• In addition we enforce the strain approximations to satisfy the constitutive 

equations, that for the linear elastic problem reads:

• Integrating by parts we obtain the corresponding reduced mixed form:
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Mixed form ─ Timoshenko beam 
• Eliminating  ۻ෩ at the element level we obtain the element ‘‘stiffness’’ matrix 

and the consistent load vector (which may be assembled as usual ):

where

• REMARKS:
 If the material behavior is non-linear the mixed formulation becomes                

more complex, and may for some cases not be possible to obtain.
 When inertia effects are included the interelement solution is no                                            

longer exact.
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Example ─ Timoshenko beam
• Uniformly loaded tapered 

cantilever beam discretized with 
2 elements of equal length.

• The bending and shear stiffness 
varies linearly between the fixed 
and the free end such that the 
values at the fixed end are twice 
the values at the free end.

• The results for the mixed form 
are compared to the one-field 
displacement solution:
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• The results for the mixed solution are exact                                       

whereas those for the other solutions have error in all quantities, 
although those for the displacement and slope are quite small.
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Devices to overcome
shear ‘‘locking’’
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Q4 bilinear quadrilateral
• The displacement field u and the 

associated strain field ࢿ for the four-
node bilinear rectangle having eight                                                       
dofs may either be established directly                                                          
in terms of bilinear shape functions in 
non-dimensional coordinates ሺߦ, ,ሻߟ

• or in terms of generalized coordinates where the displacement field is 
expressed in terms of physical coordinates x and y:
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Strain fields ─ Q4 FE
• The associated strain field is obtained as:

• In matrix form this becomes:
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Displacement patterns Q4 FE
• Physical interpretation of the eight linearly independent displacement patterns:

• Rigid body modes:
 Translation in x-direction:         
 Translation in y-direction:        
 Rigid-body rotation:

• Constant-strain modes:
 Strain in x-direction: 
 Strain in y-direction: 
 Shear strain:

• Bending-modes:
 In x-direction: 
 In y-direction:
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Displacement patterns Q4 FE
• Rigid body modes:

• Constant-strain modes:

• Bending-modes:
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Defects of the Q4 in bending

• When the Q4 element is bent, its top and bottom sides remain straight, and 
each node has only a horizontal displacement of magnitude:

• The corresponding generalized coordinate is obtained by substituting the 
nodal point coordinates into the expression for the generalized displacement 
pattern describing bending in x-direction (mode ):
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Q4 in pure bending

• From                , the FE approximation of the strain field reads:

• While from beam bending theory strains in pure bending reads:
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Parasitic shear ─ shear ‘‘locking’’
• We observe that the Q4 when exposed to pure bending displays spurious 

shear strains ߛ௫௬௘௟ as well as the expected bending strain ߝ௫௘௟

• This parasitic shear absorbs strain energy, so that if the Q4 element is 
exposed to bending the bending deformations becomes smaller than 
expected:                                                                          

• The ratio between Mel and Mb reads:

• The ܽ ܾ⁄ ଶ term is present only because of parasitic shear. The ratio                         
௘௟ܯ ⁄௕ܯ → ∞ as the aspect ratio ܽ ܾ⁄ → ∞.  Hence, the FE model 
exhibit shear locking behaviour when the aspect ratio is large. 
In practice, however, we avoid elements of large aspect ratio, 
such that the FE mesh does not “lock”. It is, however, overly stiff in bending.
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Example ─ Cantilever beam
• Tip loaded cantilever beam 

modeled with 4 equally sized
Q4 elements ( = 0.3).

• As may be expected the FE 
stress ߪ௫௘௟ is constant 
(independent of x) within         
each element.

• Except at element centres   
(where ߬௫௬௘௟ ൌ 0), the FE shear 
stress is dominated by the 
parasitic shear effect.

• The FE bending stress ߪ௫௘௟ is 
about 2/3 of its correct value             
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 1/3 of the bending strain energy is absorbed 
by the parasitic shear effect
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Selective Reduced Integration
• One device to avoid parasitic shear in pure bending is applying Selective 

Reduced Integration (SRI).

• For an isotropic/orthotropic linear elastic material the constitutive matrix, D, 
may be splitted into a normal strain part, D, and a shear strain part, D : 

• Thus, the stiffness matrix, k, may also be splitted into a normal strain 
part, k, and a shear strain part, k: 
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Selective Reduced Integration
• We observed that the parasitic shear 

strain coincide with the correct solution
along x = 0, while the shear strain in the 
bending field rotated 90o to that shown 
above is correct along the line y = 0.

• The shear locking behaviour is related to the                                                                        
shear strain energy expressed through the                                                            
element shear stiffness k.

• Since the shear strain is zero at the element centre spurious shear strain 
energy in pure bending may be avoided by evaluating the shear strain 
contribution, k, at the element centre (i.e. 1x1 Gauss rule), while the normal 
strain contribution, k, is integrated by a 2x2 Gauss rule (full integration)

• The above is referred to as Selective Reduced Integration (SRI),                        
since reduced integration is applied to the shear part of the strain 
energy, only.
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Incompatible elements – Q6
• The main reason why the Q4 element is overly stiff when bent 

is that the element cannot produce the desired quadratic 
displacement modes associated with pure bending.

• A remedy for this trouble is to augment the compatible 
displacement field for u and v with two additional modes 
referred to as incompatible displacement modes that 
describes a state of constant curvature (allow edges of the 
element to become curved).

• The additional modes are referred to as incompatible 
displacement modes, so-called internal nodeless d.o.f. that 
are not associated with any node nor are they connected to 
d.o.f. of any other element
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Incompatible elements – Q6
• Q6 is called “incompatible” because overlap or 

gap may appear between adjacent elements.

• The Q6 element can model pure bending with 
either an x-, or y-parallell neutral axis; indeed                          
the generalized dof can be non-zero simultaneously

• If the element is rectangular, the shear strain in the Q6 
element becomes

• In pure bending, the negative terms  and 
are equal in magnitude to positive terms produced by the 
compatible modes (summation terms), thus permitting shear
strains to vanish, as is proper.
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Example ─ Cantilever beam
• Tip loaded cantilever beam 

modeled with 4 equally sized     
Q6 rectangular incompatible 
elements ( = 0).

• Transverse tip displacement is 
almost exact (< 1 % error).

• Bending stress ߪ௫௘௟ is exact along 
the vertical (y-parallel)  centerline 
of each element.

• Average transverse shear stress                      
߬௫௬௘௟ is exact everywhere without 
the spurious variation in the x-
direction as observed with the 
compatible element .
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Incompatible element ─ QM6
• The Q6 element does not satisfy the completeness criterion unless the 

Jacobian is constant (i.e. rectangular or parallelogram shaped element).

• A remedy for this defect has been proposed by Taylor and Wilson:

• The strain energy of the element reads:

• We observe that the compatible Q4 element fulfil completeness 
irrespective of the shape of the element:
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Incompatible element ─ QM6
• Thus if the Q6 element satisfy the requirement:

the Q6 element fulfill completeness.
• A more general technique for constructing incompatible elements satisfying 

completeness has been proposed by Wilson and Ibrahimbegovic:

• The modified strain-displacement matrix                                                           
replaces     .

• The modified Q6 element is referred to as the QM6 element                             
which fulfill completeness for all element shapes (i.e. the                            
strong form of the patch test).
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Example ─ Cantilever beam

• Distortion test of the Q4 and the QM6 element.
• The compatible Q4 element is far too stiff and yields displacements and stresses that are 30% 

too low for rectangular shaped elements, end even worse when the element is distorted.
• In contrast, the incompatible QM6 element yields displacements and                              

stresses that are almost exact when the elements are distorted.                                                        
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Example ─ Distortion test
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Remarks ─ QM6
• The QM6 element can represent pure bending exactly, but only if the element is 

rectangular. The accuracy decline rapidly with increasing shape distortion.

• The following example with a trapezoidal shaped QM6 element may be used to 
illustrate the defect of the QM6 element when it is not rectangular shaped.

• When a bending load is applied to a 
trapezoidal shaped QM6 element, the 
incompatible displacement mode is                                                                                 
activated so that top and bottom edges 
become arcs (as shown by the dashed lines). 

• Under pure bending, top and bottom edges of a 
beam should have the same radius of curvature.

• However, the arcs at the top and bottom edges of a trapezoidal shaped element 
have much different radius of curvature, and the discrepancy increases as the 
amount of shape distortion increases (i.e. the 
element shape deviate from the rectangle).
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