

Computational Homogenization and Multiscale Modeling

Kenneth Runesson and Fredrik Larsson

Chalmers University of Technology, Department of Applied Mechanics

Lecture 3: Contents

- FE² with error estimation and adaptivity
 - Discretization and modeling errors
 - Error control for FE^2
 - Computational results for (simple) 2D model problems
 - Adaptive (seamless) bridging of scales
- Outlook Selected research at Chalmers
 - Transient problems (Ph.D. student Su)
 - Permeability (Ph.D. student Sandström)
 - Powder metallurgy Sintering (Ph.D. student Öhman)

Lecture 3 - Part I

FE² with error estimation and adaptivity

Modeling and Computation – Errors

Computational mechanics - Accuracy vs. cost

- Error control
 - What is the goal of the analysis and what is the accuracy?
- The optimization problem of adaptive analysis
 Obtain the required accuracy at minimum computational cost or

Obtain maximum accuracy with available computational resources

• Different sources of errors Balance the accuracy (and required effort) in modeling and solution

Error control

Are the equations solved right?

Are the right equations solved?

Goal oriented error control - The dual solution

• Structural problem:

$$\underline{K}\,\underline{u} = \underline{f}$$

• Output of interest

$$Q = \underline{q}^{\mathrm{T}} \, \underline{u}$$

Example structure $\begin{bmatrix} u_2, f_2 \\ u_1, f_1 \end{bmatrix} \begin{bmatrix} u_4, f_4 \\ u_3, f_3 \end{bmatrix}$

Study, e.g., elongation of the diagonal bar

$$Q = 1/\sqrt{2} \, u_3 + 1/\sqrt{2} \, u_4$$

• Dual problem (cf. influence/Green's functions)

$$\underline{K}^{\mathrm{T}}\,\underline{u}^* = \underline{q}$$

$$\Rightarrow Q = \underline{q}^{\mathrm{T}} \, \underline{u} = \underline{u}^{*\mathrm{T}} \underline{K} \, \underline{u} = \underline{u}^{*\mathrm{T}} \underline{f}$$

Goal oriented error control - Solution error

• Approximate solution to exact problem

$$\underline{K}\,\underline{u}_h \approx \underline{f} \quad \Rightarrow Q \approx Q_h = \underline{q}^{\mathrm{T}}\underline{u}_h$$

• Solution (discretization in FEM) error

$$E_h \stackrel{\text{def}}{=} Q - Q_h = \underline{q}^{\mathrm{T}} \left(\underline{u} - \underline{u}_h \right) = \underline{u}^{*\mathrm{T}} \underline{K} \left(\underline{u} - \underline{u}_h \right) = \underline{u}^{*\mathrm{T}} \underline{r}_h$$

Computable residual

$$\underline{r}_h = \underline{K}\,\underline{u} - \underline{K}\,\underline{u}_h = \underline{f} - \underline{K}\,\underline{u}_h$$

- Adaptivity by controlling \underline{r}_h
- Issues in practice
 - Linearization of nonlinear problems
 - Approximate solution of \underline{u}^* Must be more accurate than the solution of \underline{u}_h

Goal oriented error control - Model error

• Exact solution to approximate problem

$$\underline{K}^m \, \underline{u}^m = \underline{f} \quad \Rightarrow Q \approx Q^m = \underline{q}^{\mathrm{T}} \underline{u}^m$$

• Model error

$$E^{m} \stackrel{\text{def}}{=} Q - Q^{m} = \underline{q}^{\mathrm{T}} \left(\underline{u} - \underline{u}^{m} \right) = \underline{u}^{*\mathrm{T}} \underline{K} \left(\underline{u} - \underline{u}^{m} \right) = \underline{u}^{*\mathrm{T}} \underline{r}^{m}$$

Computable residual

$$\underline{r}^m = \underline{K}\,\underline{u} - \underline{K}\,\underline{u}^m = \underline{f} - \underline{K}\,\underline{u}^m = (\underline{K}^m - \underline{K})\,\underline{u}^m$$

- Adaptivity by controlling \underline{r}^m
- Issues in practice
 - Approximate solution of \underline{u}^* May be based on approximate model
 - Approximate evaluation of exact model, e.g. \underline{K} , for model residual Must be more accurate than approximate model, e.g. \underline{K}^m

Prototype problem: Nonlinear elasticity

 Strong form: Solve for displacement field u(X) from

$$-\boldsymbol{P}\cdot\boldsymbol{
abla} = \boldsymbol{f} \quad ext{in } \Omega,$$

 $\boldsymbol{P} = \boldsymbol{P}(\boldsymbol{F}),$

 $F = I + u \otimes \nabla,$

• Weak form: Solve for displacements $u \in \mathcal{U}$ s.t.

$$\int_{\Omega} \boldsymbol{P}\left(\boldsymbol{F}[\boldsymbol{u}]\right) : \left[\delta \boldsymbol{u} \otimes \boldsymbol{\nabla}\right] \mathrm{d}V = \int_{\Omega} \boldsymbol{f} \cdot \delta \boldsymbol{u} \, \mathrm{d}V, \quad \forall \delta \boldsymbol{u} \in \mathcal{U}^{0}$$

• Finite element formulation: Solve for displacements $u_h \in U_h \subset U$ s.t.

$$\int_{\Omega} \boldsymbol{P} \left(\boldsymbol{F}[\boldsymbol{u}_h] \right) : \left[\delta \boldsymbol{u} \otimes \boldsymbol{\nabla} \right] \mathrm{d}V = \int_{\Omega} \boldsymbol{f} \cdot \delta \boldsymbol{u} \, \mathrm{d}V, \quad \forall \delta \boldsymbol{u} \in \mathcal{U}_h^0$$

Nonlinear elasticity - Error control

• Dual problem: Solve for displacements $u^* \in \mathcal{U}^0$ s.t.

$$\int_{\Omega} [\boldsymbol{u}^* \otimes \boldsymbol{\nabla}] : \frac{\mathrm{d}\boldsymbol{P}}{\mathrm{d}\boldsymbol{F}} : [\delta \boldsymbol{u} \otimes \boldsymbol{\nabla}] \,\mathrm{d}\boldsymbol{V} = \int_{\Omega} \boldsymbol{q} \cdot \delta \boldsymbol{u} \,\mathrm{d}\boldsymbol{V}, \quad \forall \delta \boldsymbol{u} \in \mathcal{U}^0$$

based on output of interest $Q(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{q} \cdot \boldsymbol{u} \mathrm{d}V$

• Approximate model

$$\boldsymbol{P}(\boldsymbol{F}) \approx \boldsymbol{P}^m(\boldsymbol{F})$$

• Error computation for approximation \boldsymbol{u}_h^m

$$E = \underbrace{\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{u}^* \, \mathrm{d}V - \int_{\Omega} \boldsymbol{P}^m \left(\boldsymbol{F}[\boldsymbol{u}_h^m]\right) : \left[\boldsymbol{u}^* \otimes \boldsymbol{\nabla}\right] \, \mathrm{d}V}_{\text{Discretization error}}$$

+
$$\underbrace{\int_{\Omega} \boldsymbol{P}^m \left(\boldsymbol{F}[\boldsymbol{u}_h^m]\right) : \left[\boldsymbol{u}^* \otimes \boldsymbol{\nabla}\right] \, \mathrm{d}V - \int_{\Omega} \boldsymbol{P} \left(\boldsymbol{F}[\boldsymbol{u}_h^m]\right) : \left[\boldsymbol{u}^* \otimes \boldsymbol{\nabla}\right] \, \mathrm{d}V}_{\text{Modeling error}}$$

Numerical example – Adaptive modeling

- "Exact" model: Elasto-plasticity
- "Approximate" model: Elasticity
- Error measure: Contraction of hole diameter $Q(\boldsymbol{u}) = -u_2 |_{\boldsymbol{X} = \boldsymbol{X}_B}$
- Note: Only model error computed $\Rightarrow u_h^* \in \mathbb{V}_h$ considered "exact"
- LARSSON, RUNESSON: *Comput.Meth.Appl.Mech.Eng.* (2004)

Model adaptivity – Coarse tolerance

TOL = 10%

Model resolution

Error distribution

Model adaptivity – Fine tolerance

TOL=1%

Model resolution

Error distribution

Classical (first order) homogenization

Macro-scale (equilibrium): $ar{u}\in ar{\mathbb{U}}$

$$ar{a}\{ar{m{u}};\deltaar{m{u}}\}=ar{l}\{\deltaar{m{u}}\},\quad orall\deltaar{m{u}}\inar{\mathbb{U}}^0$$

$$ightarrowar{oldsymbol{H}}\left(=ar{oldsymbol{F}}-oldsymbol{I}
ight)$$

"Typical subscale problem" for Representative Volume Element (RVE): For given \bar{H} , find $u \in \mathbb{U}_{\Box}(\bar{H})$

$$a_{\Box}(\boldsymbol{u};\delta\boldsymbol{u}) = l_{\Box}(\delta\boldsymbol{u}), \quad \forall \delta\boldsymbol{u} \in \mathbb{U}^{0}_{\Box}$$

 $\rightarrow \bar{P}, \bar{L} \quad [\mathrm{d}\bar{P} = \bar{L} : \mathrm{d}\bar{F} \text{ algorithmic relation}]$

• Remarks

- Basis for FE² method, iterative solution involving macro- and subscales

,

- $\{\bullet\}$ implicit function (via homogenization)
- Functions in $\overline{\mathbb{U}}$ smoother than $\mathbb{U}_{\Box}(\overline{\boldsymbol{H}})$

Macroscale model and discretization errors

• "Fine" model: Exact solution $ar{m{u}}\inar{\mathbb{U}}$ solves

$$\bar{a}\{\bar{\boldsymbol{u}};\delta\bar{\boldsymbol{u}}\}=\bar{l}\{\delta\bar{\boldsymbol{u}}\}\quad\forall\delta\bar{\boldsymbol{u}}\in\bar{\mathbb{U}}^0$$

• "Work" model (q = hierarchical model parameter): FE-solution $\bar{u}_{Hq} \in \bar{\mathbb{U}}_H \subset \bar{\mathbb{U}}$ solves

$$\bar{a}_{(q)}\{\bar{\boldsymbol{u}}_{Hq};\delta\bar{\boldsymbol{u}}_{H}\}=\bar{l}\{\delta\bar{\boldsymbol{u}}_{H}\}\quad\forall\delta\bar{\boldsymbol{u}}_{H}\in\bar{\mathbb{U}}_{H}^{0}\subset\bar{\mathbb{U}}^{0}$$

- Error measure $E\{\bar{\boldsymbol{u}}; \bar{\boldsymbol{u}}_{Hq}\} = Q\{\bar{\boldsymbol{u}}\} Q_{(q)}\{\bar{\boldsymbol{u}}_{Hq}\}$
- Exact error representation using dual solution $ar{m{u}}^*\inar{\mathbb{U}}^0$

$$E\{\bar{\boldsymbol{u}}, \bar{\boldsymbol{u}}_{Hq}\} = \underbrace{R_{\text{FEM}}\{\bar{\boldsymbol{u}}_{Hq}; \bar{\boldsymbol{u}}^* - \bar{\boldsymbol{\rho}}_H\}}_{E_{\text{FEM}}} + \underbrace{R_{\text{MOD}}\{\bar{\boldsymbol{u}}_{Hq}; \bar{\boldsymbol{u}}^*\}}_{E_{\text{MOD}}}, \quad \forall \bar{\boldsymbol{\rho}}_H \in \mathbb{U}_H^0$$

Dept. of Applied Mechanics

Macroscale model and discretization errors

• Discretization and model residuals

$$R_{\text{FEM}}\{\bar{\boldsymbol{u}}_{Hq};\delta\bar{\boldsymbol{u}}\} = \bar{l}\{\delta\bar{\boldsymbol{u}}\} - \int_{\Omega} \bar{\boldsymbol{P}}_{(q)}\{\bar{\boldsymbol{u}}_{Hq}\}: \bar{\boldsymbol{H}}[\delta\bar{\boldsymbol{u}}] \,\mathrm{d}\Omega$$
$$R_{\text{MOD}}\{\bar{\boldsymbol{u}}_{Hq};\delta\bar{\boldsymbol{u}}\} = -\int_{\Omega} \left[\bar{\boldsymbol{P}}\{\bar{\boldsymbol{u}}_{Hq}\} - \bar{\boldsymbol{P}}_{(q)}\{\bar{\boldsymbol{u}}_{Hq}\}\right]: \bar{\boldsymbol{H}}[\delta\bar{\boldsymbol{u}}] \,\mathrm{d}\Omega$$

Remarks

- R_{FEM} captures macroscale discretization error
- R_{MOD} captures macroscale error due to inexact computation of subscale stresses: $\bar{P}\{\bar{u}\} - \bar{P}_{(q)}\{\bar{u}\}$ macroscale stress error
- $\begin{array}{l} \ \bar{P}_{(q)} \ \text{computable for given subscale "model", } \bar{P} \ \text{normally inaccessible } \sim \\ \text{need for approximation, i.e. "best possible accessible model", } \bar{P}_{(q^+)}, \\ q^+ \gg q \end{array}$
- − Hierarchical model parameter $q(X, t) \in [q_{\text{coarse}}, q_{\text{fine}}]$ in Ω × I, q_{fine} may be inaccessible!! E.g. $L_{\Box} = L_{\text{RVE}} = \infty$
- Adaptive choice of (balanced) discretization and model errors fulfills accuracy requirement

Sources of macroscale model errors

- Inadequate constitutive models for subscale constituents
- Inexact prolongation conditions (variational framework, boundary conditions) of Representative Volume Element, RVE
- Finite size of RVE, (should rather be denoted Subscale Volume Element for L_□ < ∞)
- FE-discretization of subscale problem $(Adaptive FE)^2$
- Neglecting subscale transient character
- **Remark**: Exact solution still based on complete scale separation within the chosen framework of model-based homogenization. Error due to scale-mixing is *not* (and cannot be) included in this framework!

. . .

Transfer of error across the scales

- - **Remark**: All errors on a given subscale appear as model error on the nearest coarser scale

Example: Membrane of Duplex Stainless Steel

- Macro-scale plane stress, $\bar{P}_{33} = 0$
- Crystal plasticity in each phase
- Only model error considered
- Subscale modeling: Prolongation conditions
 - Dirichlet boundary conditions: accurate - expensive (q = 1)
 - Voigt (=Taylor) approximation: approximate - low cost (q = 0)
- $Q = \bar{u}_2(\bar{X}_B)$ diameter contraction
- Material parameter values for two phases of SAF 2507 DSS

	λ [GPa]	G [GPa]	q	ξ	h_0 [MPa]	h_∞ [MPa]	τ_y [MPa]	n	<i>t</i> _* [s]
austenite	71	106	1.40	188	3680	0	164	1	small
ferrite	71	106	1.61	148	768	0	321	1	small

Macroscale response (non-adaptive)

• Global load-displacement response for DSS-membrane

- Only one single realization of RVE in each macroscale GP
- Note: Global response is quite insensitive. Would the Taylor model (fluctuation field omitted) suffice?

Adaptive subscale Dirichlet-Taylor

- Adaptive results for TOL $\approx 10^{-4}$ at completed loading (40 load incr). Assumed at most linear error growth. Note: Very small tolerance!
 - Model distribution (dark=Dirichlet) after 20, 30 and 40 load increments (left to right)

 Distribution of error (dark=high) generated during 20th, 30th and 40th load increment (left to right)

Example: Meso-macro-scale modeling

- Macro-scale problem
 - Ramp loading in time, $T^* = 0.01 t/t_*, t/t_* \in (0, 4)$
 - Goal function: $Q(\boldsymbol{u}) \stackrel{\text{def}}{=} H_{11}[\boldsymbol{u}]|_{\bar{\boldsymbol{X}}_{A}}$
 - Aim: Model error \approx Macro-scale discretization error
- Meso-scale problem
 - Random realization (perturbation of particle size and lattice) of composite for particle volume fraction.

Subscale: Adaptive constitutive modeling

• Elasto-plastic matrix

 $E_{\text{matr}}, \nu_{\text{matr}} = 0.3$ $\sigma_{\text{y}} = 0.01 E_{\text{matr}} \text{ (von Mises)}$ $H = 0.2 E_{\text{matr}}, r = 0.5 \text{ (mixed hardening)}$ $t_* \text{ (Perzyna visco-plasticity)}$

• Elastic grains

$$E_{\text{part}} = 5 E_{\text{matr}}, \ \nu_{\text{part}} = 0.3$$

- Model hierarchy
 - − $q = q_{\text{fine}} = 1$: Elasto-plastic matrix \sim Meso-macro-scale model
 - q = 0: Linear elastic matrix $\sim A$ priori homogenized macro-model

Meso-scale Example: Simple shear test

- Elasto-plastic composite
 - Elasto-plastic matrix
 - Elastic particles
- Macroscopic simple shear test (of RVE) Effective plastic strain: 0 (black) – $\sim 2.5\%$ (white)

Constitutive modeling – Adaptive results

- Adaptive error control
- Total (spatial) error $\tilde{E}_{\rm rel} \approx 5\%$ within each time-step
- Aim: Model error \approx Macro-scale discretization error
- Adapted mesh and model, $t/t_* = 1$
- Adapted mesh and model, $t/t_* = 2$

Adapted mesh and model, $t/t_* = 3$

- Adapted model distribution
 - q = 0: Elastic matrix (dark)
 - q = 1: Elasto-plastic matrix (light)

• Final adapted mesh and model, $t/t_* = 4$

- Adapted model distribution
 - -q = 0: Elastic matrix (dark) -q = 1: Elasto-plastic matrix (light)

- Example of actual deformed elasto-plastic RVE
 - $t/t_* = 2$ $t/t_* = 3$ $t/t_* = 4$ (final)

• Effective plastic strain 0 (black) – $\sim 3.8\%$ (white)

Example: Particle composite

- Macro-scale plane strain, $\bar{H}_{33} = 0$
- Nonlinear elastic phases
- Dirichlet b.c. on RVE
- Discretization and model errors considered
- Subscale modeling: FE-discretization, resolved with discrete set of tolerances w.r.t error in macroscale stress components

-
$$TOL_{sub}(q) = 10^{-(q+1)/2},$$

 $q = \{1, 2, \ldots\}$

• Material parameter values for two phases

	K [GPa]	G [GPa]
matrix	20	10
particles	300	100

Adaptive discretization of RVE (FE^2)

• Adaptive computation \rightsquigarrow Total relative error $\tilde{E}_{rel} \approx 5.8\%$ (after 6 macroscale refinements)

Adapted macroscale mesh

Adapted model distribution $q \in [1, 3]$ (dark – light)

• Note: Only one single realization of RVE in each macroscale GP

Adaptive discretization of RVE (FE^2)

• Snapshots of deformed RVE's for actual values of macroscale \bar{F} and subscale error tolerance level q

• Note: Enhanced (automatic) subscale resolution for reduced tolerance, TOL_{sub} , on subscale discretization error

Example: Particle composite

- Macro-scale plane strain, $\bar{H}_{33} = 0$
- Nonlinear elastic phases
- Dirichlet b.c. on RVE
- Fixed tolerance (TOL_{sub} = 5%) for RVE discretization w.r.t. error in macro-scale stress components → adaptive subscale meshes (unique for each RVE)
- Discretization and model errors considered
- Subscale modeling: Size of RVE
 - $L_{\Box} = q \times$ lattice size, $q = \{1, 2, \ldots\}$

Adaptive size of RVE (FE^2)

• Adaptive computation \sim Total relative error $\tilde{E}_{rel} \approx 4.1\%$ (after 5 refinements)

Adapted mesh

Adapted model distribution $q \in [1, 3]$ (dark - light)

a-3

Adaptive size of RVE (FE^2)

• Snapshots of deformed QVE's for actual values of macroscale \bar{F} (deformation magnified) and subscale error tolerance level q

a-2

$$q = 1$$
 $q = 2$ $q = 0$

- Remarks:
 - Small macro-deformations (although possibly large RBM, which contribute to \bar{F}) \rightsquigarrow Small-size QVE
 - Small-size QVE → Near-homogeneous sub-scale deformations for Dirichlet B.C. (~ Taylor assumption) → Coarse sub-scale mesh for given tolerance

Two-scale modeling - "The basic dilemma"

- Mixing/separation of scales: Two extreme cases
 - Adopt (1st order) homogenization everywhere (complete scale separation) – inexpensive

Note: Communication via macro- and subscales entirely via homogenized quantities, e.g. strains and stresses

- 2. Resolve fine scale evereywhere in the space/time domain (complete scale mixing), "overkill" solution expensive
- Need to account for scale-mixing depends on
 - Physical phenomena resulting in smooth or non-smooth fields, e.g. localized damage and deformations is stress problems
 - Required level of accuracy in desired output (quantity of interest): Local (subscale) or global (macroscale)

Example of scalemixing – Transient problems

- Transient RVE-problem
 → Size-effect (Physical & Numerical)
 0th and 1st order derivatives in space
- Stationary RVE-problem (Exact for the limit L_□ →0)

 → Complete scale separation
 cf. ÖZDEMIR ET AL. (2008), TEMIZER & WRIGGERS (2010)
- Investigation of error for 1D heat flow example
 - Macroscale problem of size L
 - Harmonic variation of heat capacity and conductivity with wavelength l
 - FE²-solutions with different RVE-sizes, L_{\Box} , and different macro-scale discretizations
Homogenization of transient problems

Homogenization of transient problems

Optimal RVE-size meshdependent!

"Model-based" homogenization

- A priori assumed separation of scales
- Order of homogenization (1st, 2nd, etc) part of modeling
- Homogenization on RVE's in quadrature points
- Prolongation condition, i.e. how to impose \bar{F} on the subscale (defining the RVE-problem), is part of modeling
- No possibility for "built-in" scalebridging

"Discretization-based" homogenization

- No a priori assumed homogenization on RVE's
- Order of homogenization (1st, 2nd, etc) determined by macroscale FE-approximation (no model assumption)
- Variationally consistent "nonlocal homogenization" on QVE=Quadrature Volume Element (in case of sufficient scale separation)
- Possibility for adaptive FE²
- Admits adaptive (seamless) bridging of scales

Micro-inhomogeneity - Characteristics

Characteristic dimensions of substructure
 Note: Periodic lattice structure shown for illustration only

- Resolution length of subscale (e.g. fraction of lattice size with presumed homogeneous material properties): l⁻_{sub}
- Size of QVE (Quadrature Volume Element): l_{sub}^+
- **Remark**: Aim for $l_{sub}^+ \approx l_{RVE}$ = size of RVE (Representative Volume Element)
- **Remark**: l_{sub}^+ , l_{sub}^- obtained as the result of *analysis* of the properties of the substructure: Topology and size of lattice structure (in case of ordered structure), volume fraction of particles, statistical properties, etc. They are not physical lengths *per se* but are rather model assumptions and should be chosen adaptively!

Discretization-based scale-bridging

- Model resolution defined by macroscale FE-mesh diameter H
- Scale-bridging levels in present framework relevant to
 - No scale separation (level I)
 - Partial scale separation (level II)
 - (Near-)complete separation (level III)
- The *adaptively* chosen value of *H* determines the appropriate modeling level!
 ⇒ Not quite (but close to) seamless algorithm

• Level II: cf. Variational Multiscale Method, HUGHES (1995), MÅLQVIST & M. LARSON (2006), ...

Macro-subscale coupling and homogenization

• (De)coupling of coarse and fine scales

Given $\boldsymbol{u}^{\mathrm{M}}, \exists$ prolongation $\tilde{\boldsymbol{u}}^{\mathrm{s}}\{\boldsymbol{u}^{\mathrm{M}}\}$ s.t.

$$oldsymbol{u} = ilde{oldsymbol{u}} \{oldsymbol{u}^{\mathrm{M}}\} \stackrel{\mathrm{def}}{=} oldsymbol{u}^{\mathrm{M}} + ilde{oldsymbol{u}}^{\mathrm{s}} \{oldsymbol{u}^{\mathrm{M}}\}$$

$$oldsymbol{u}^{\mathrm{M}}
ightarrow oldsymbol{u} \ \Rightarrow \ ilde{oldsymbol{u}}^{\mathrm{s}}
ightarrow oldsymbol{0}$$

 $m{u}^{
m M} =$ "coarse scale" - macroscale solution $ilde{m{u}}^{
m s} \{m{u}^{
m M}\} =$ "fine scale" - subscale solution (fluctuation field)

- Condition for u^{M} to act as "homogenizer": Satisfaction of Hill-Mandel macro-homogeneity condition
 - Model-based homogenization: A priori assumption on the variation of u^{M} within RVE's
 - Discretization-based homogenization: FE-approximation for $u^{M} \rightarrow u_{H}^{M}$ within QVE = Quadrature Volume Element

Discretization-based homogenization

- Subscale problem on QVE: Given macroscale FE-solution $u_H^{\mathrm{M}} \mapsto$ subscale prolongation $\tilde{u}^{\mathrm{s}}\{u_H^{\mathrm{M}}\}$ (may be incomputable) replaced by $\tilde{u}^{\mathrm{s}}_{(q)}\{u_H^{\mathrm{M}}\}$ (always computable)
 - *q* represents hierarchical level of subscale model and defines "work model"
 Example: Local tolerance: $tol = 10^{-q/2}$
- Subscale "Dirichlet problem" on QVE: For given u^M_H, find subscale solution *ũ*^s ∈ U_□ = U⁰_□, *ũ*^s = 0 on Γ_□, s.t.

$$R_{\Box}(\delta \boldsymbol{u}^{\mathrm{s}}) \stackrel{\text{def}}{=} l_{\Box}(\delta \boldsymbol{u}^{\mathrm{s}}) - a_{\Box}(\boldsymbol{u}_{H}^{\mathrm{M}} + \tilde{\boldsymbol{u}}^{\mathrm{s}}; \delta \boldsymbol{u}^{\mathrm{s}}) = 0 \quad \forall \delta \boldsymbol{u}^{\mathrm{s}} \in \mathbb{U}_{\Box}$$
$$a_{\Box}(\boldsymbol{u}; \delta \boldsymbol{u}) \stackrel{\text{def}}{=} \langle \boldsymbol{P}(\boldsymbol{F}) : \boldsymbol{G}[\delta \boldsymbol{u}] \rangle_{\Box}, \quad \langle \bullet \rangle_{\Box} \stackrel{\text{def}}{=} \frac{1}{|\Omega_{\Box}|} \int_{\Omega_{\Box}} \bullet \, \mathrm{d}V, \quad \boldsymbol{G}[\boldsymbol{u}] \stackrel{\text{def}}{=} \boldsymbol{u} \otimes \boldsymbol{\nabla}$$

Remark: Variational framework may be extended to accomodate discont. u^s on Γ_□, eg. weakly periodic variational framework [future work]

Discretization-based homogenization

• Macroscale FE-problem for work model: Solve for $u_H^M \in \mathbb{U}_H^M$ that satisfies:

$$\begin{split} R^{(q)}\{\boldsymbol{u}_{H}^{\mathrm{M}};\delta\boldsymbol{u}_{H}^{\mathrm{M}}\} &\stackrel{\text{def}}{=} l(\delta\boldsymbol{u}_{H}^{\mathrm{M}}) - a^{(q)}\{\boldsymbol{u}_{H}^{\mathrm{M}};\delta\boldsymbol{u}_{H}^{\mathrm{M}}\} = 0 \quad \forall \delta\boldsymbol{u}_{H}^{\mathrm{M}} \in \mathbb{U}_{H}^{\mathrm{M},0} \\ a^{(q)}\{\boldsymbol{u}_{H}^{\mathrm{M}};\delta\boldsymbol{u}^{\mathrm{M}}\} \stackrel{\text{def}}{=} \int_{\Omega} a^{(q)}_{\Box}\{\boldsymbol{u}_{H}^{\mathrm{M}};\delta\boldsymbol{u}^{\mathrm{M}}\} \,\mathrm{d}V = \int_{\Omega} \left\langle \boldsymbol{P}^{(q)}\{\boldsymbol{u}_{H}^{\mathrm{M}}\}:\boldsymbol{G}[\delta\boldsymbol{u}^{\mathrm{M}}] \right\rangle_{\Box} \,\mathrm{d}V \\ \boldsymbol{P}^{(q)}\{\boldsymbol{u}_{H}^{\mathrm{M}}\} \stackrel{\text{def}}{=} \boldsymbol{P}(\boldsymbol{G}[\tilde{\boldsymbol{u}}_{Hq}\{\boldsymbol{u}_{H}^{\mathrm{M}}\}]) \\ \tilde{\boldsymbol{u}}_{Hq}\{\boldsymbol{u}_{H}^{\mathrm{M}}\} \stackrel{\text{def}}{=} \boldsymbol{u}_{H}^{\mathrm{M}} + \tilde{\boldsymbol{u}}_{(q)}^{\mathrm{s}}\{\boldsymbol{u}_{H}^{\mathrm{M}}\} \end{split}$$

Discretization-based homogenization

• Macroscale quadrature for FE-solution $\tilde{\boldsymbol{u}}_{Hq} \{ \boldsymbol{u}_{H}^{\mathrm{M}} \} \stackrel{\mathrm{def}}{=} \boldsymbol{u}_{H}^{\mathrm{M}} + \tilde{\boldsymbol{u}}_{(q)}^{\mathrm{s}} \{ \boldsymbol{u}_{H}^{\mathrm{M}} \}$ of "work model"

$$a(\tilde{\boldsymbol{u}}_{Hq}; \delta \boldsymbol{u}_{H}^{\mathrm{M}}) = \int_{\Omega} a_{\Box}^{(q)} \{\boldsymbol{u}_{H}^{\mathrm{M}}; \delta \boldsymbol{u}_{H}^{\mathrm{M}}\} \mathrm{d}V \approx \sum_{i=1}^{NQVE} W_{i} a_{\Box,i}^{(q)} \{\boldsymbol{u}_{H}^{\mathrm{M}}; \delta \boldsymbol{u}_{H}^{\mathrm{M}}\}$$

 $W_i =$ quadrature weights

• "Homogenization" on a QVE does not introduce a macroscale error *per se*; however, **quadrature does**!

A trivial observation $\mathcal{I} \stackrel{\text{def}}{=} \int_{\Omega} f(x) \, \mathrm{d}x$ "Homogenization": $f_i \stackrel{\text{def}}{=} \frac{1}{|\Omega_i|} \int_{\Omega_i} f \, \mathrm{d}x$ Define $\tilde{f}(x) = f_i \text{ if } x \in \Omega_i$ $\Rightarrow \int_{\Omega} \tilde{f}(x) \, \mathrm{d}x = \mathcal{I}!!!$

Discretization-based homogenization: Evaluation

• "Homogenization property" for macroscale FE-approximation u_H^M of polynomial order p:

$$\langle \boldsymbol{P} : \boldsymbol{G}[\delta \boldsymbol{u}_{H}^{\mathrm{M}}] \rangle_{\Box} = \bar{\boldsymbol{P}}^{(1)} : \delta \bar{\boldsymbol{H}}^{(1)} + \bar{\boldsymbol{P}}^{(2)} : \delta \bar{\boldsymbol{H}}^{(2)} + \ldots + \bar{\boldsymbol{P}}^{(p)} : \delta \bar{\boldsymbol{H}}^{(p)}$$

$$\bar{\boldsymbol{P}}^{(k)} \stackrel{\mathrm{def}}{=} \langle \boldsymbol{P} \otimes \underbrace{[\boldsymbol{X} - \bar{\boldsymbol{X}}] \otimes [\boldsymbol{X} - \bar{\boldsymbol{X}}] \otimes \ldots \otimes [\boldsymbol{X} - \bar{\boldsymbol{X}}]}_{k-1} \rangle_{\Box}$$

$$\delta \bar{\boldsymbol{H}}^{(k)} \stackrel{\mathrm{def}}{=} (\boldsymbol{G}[\delta \boldsymbol{u}_{H}^{\mathrm{M}}] \otimes \underbrace{\boldsymbol{\nabla} \otimes \boldsymbol{\nabla} \otimes \ldots \otimes \boldsymbol{\nabla}}_{k-1}) (\bar{\boldsymbol{X}})$$

• Remark: $\bar{\boldsymbol{P}}^{(k)}, \, \bar{\boldsymbol{H}}^{(k)}$ live in "the discrete world"

• **Remark**: 1st order homogenization obtained for p = 1: only classical volume average $\bar{P}^{(1)}$ remains

Example: Stationary macro-crack

- Sub-scale problem characterization
 - Stiff elastic particles, $G_{\rm P}$, $K_{\rm P} = 10G_{\rm P}$
 - Elastic-plastic matrix,

$$G_{\rm M} = G_{\rm P}/10, K_{\rm M} = K_{\rm P}/10, \sigma_{{
m Y},{
m M}} = G_{\rm M}/10$$

• Adaptive control of average displacement $Q = \frac{1}{|\Gamma_{top}|} \int_{\Gamma_{top}} u_2 dA$

Results: Stationary macro-crack

• Large scale separation, $d/L_{MAC} = 1/100$, adaptive algorithm aiming for TOL = 2%

Small scale separation, $d/L_{MAC} = 1/10$, adaptive algorithm aiming for TOL = 20% Note: Substructure not yet well resolved!

black: level I (full resolution), grey: level II (special case of VMS), white: level III (homogenization)

- CHALMERS
 - Large scale separation "multiscale closeup"

• Small scale separation - "multiscale closeup": **Note**: still large error, substructure not yet well resolved!

Selected references

• Goal-oriented error control for FEM

K. Eriksson, D. Estep, P. Hansbo, C. Johnson. Introduction to adaptive methods for differential equations. *Acta Numer*. 1995: 105–158.

R. Becker, R. Rannacher. A feed-back approach to error control in finite element methods: basic analysis and examples. *East- West J. Numer. Math.* 1996: 237–264.

Model and discretization errors

E. Stein, S. Ohnimus. Coupled model- and solution-adaptivity in the finite-element method. *Comput. Methods Appl. Mech. Engrg.* 1997: 327–350.

J.T. Oden, S. Prudhomme, D.C. Hammerand, M.S. Kuczma. Modeling error and adaptivity in nonlinear continuum mechanics. *Comput. Methods Appl. Mech. Engrg.* 2001: 6663–6684.

J.T. Oden, K.S. Vemaganti. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. *J. Comput. Phys.* 2000: 22–47.

M. Braack, A. Ern. A posteriori control of modeling errors and discretization errors. *Multiscale Model. Simul.* 2003: 221–238.

F. Larsson, K. Runesson. Model and discretization error in (visco)plasticity with a view to hierarchical modeling. *Comput. Methods Appl. Mech. Engrg.* 2004: 5283–5300.

C. Oskay, J. Fish. Eigendeformation based reduced order homogenization. *Comput. Meth. Appl. Mech. Engrg.* 2007: 1216–1243.

Selected references, cont'd

• Adaptive FE² (Chalmers)

F. Larsson, K. Runesson. Adaptive computational meso-macro-scale modeling of elastic composites. *Comput. Meth. Appl. Mech. Engrg.* 2006: 324–338.

F. Larsson, K. Runesson. RVE computations with error control and adaptivity: The power of duality. *Comput. Mech.* 2007: 647–661.

F. Larsson, K. Runesson. On the adaptive bridging of scales in continuum modeling based on error control. *Multiscale Comput. Engrg.* 2008: 371–392.

F. Larsson, K. Runesson. On two-scale adaptive FE analysis of micro-heterogeneous media with seamless scale-bridging. *Comput. Meth. Appl. Mech. Engrg.* 2010: In Press.

Lecture 3 - Part II

Outlook - Selected research at Chalmers

Consolidation in porous granular media

Su, Larsson, Runesson

- Multiscale modeling of porous fine-grained granular material with pore-fluid, such as asphalt concrete (sand/bitumen mixture with embedded stones)
- Micro-inhomogeneity: particles in matrix
- **Note**: Intrinsically time-dependent (seepage)

Quasi-static consolidation problem

• Balance equations for subscale porous medium (mixture) subjected to quasistatic loading

 $-\hat{\boldsymbol{\sigma}} \cdot \boldsymbol{\nabla} - \hat{\varrho} \boldsymbol{g} = \mathbf{0} \text{ in } \Omega \times [0, T), \text{ momentum balance}$ $d_t \Phi + \hat{\boldsymbol{w}} \cdot \boldsymbol{\nabla} = 0 \text{ in } \Omega \times [0, T), \text{ mass balance of pore fluid}$

• Storage function

$$\Phi = \phi \left[1 + \frac{u - u_0}{K^{\mathrm{F}}} \right] + \epsilon_{\mathrm{vol}}, \quad \epsilon_{\mathrm{vol}} \stackrel{\mathrm{def}}{=} \boldsymbol{u} \cdot \boldsymbol{\nabla}$$

- Bulk stress, effective stress: $\hat{\boldsymbol{\sigma}} = \boldsymbol{\sigma}' u\boldsymbol{I}$
- Hooke's law for solid skeleton: $\sigma' = \sigma'_0 + 2G\epsilon_{dev} + K\epsilon_{vol}I$
- Nonlinear Darcy's law for seepage: $\hat{\boldsymbol{w}} = -k(u, \boldsymbol{\nabla} u) \left[\boldsymbol{\nabla} u \varrho^{\mathrm{F}} \boldsymbol{g} \right]$
- Remark: σ̂₀ = initial equilibrium stress, u₀ = non-flow pore pressure [∇u₀ = ρ^Fg]. Henceforth: Set σ̂₀ = 0, u₀ = 0 without loss of generality

Decoupled theory – Pore pressure equation

- Decoupled theory: $\epsilon_{\text{vol}} = K^{-1}[u + \hat{\sigma}_{\text{m}}] \xrightarrow{\text{approx}} K^{-1}[u + \hat{\sigma}_{\text{m}}^*]$ cf. Christian and Boehmer, ASCE J. Eng. Mech., 1970
- Approximate "total mean stress" $\hat{\sigma}_{m}^{*}$ computed a priori. Assumptions:
 - Assume undrained condition in each micro-constituent (matrix, particles) \sim "undrained macroscale elastic moduli" \bar{G}^*, \bar{K}^*
 - Total stress analysis \rightarrow equilibrium stress $\hat{\sigma}^* \rightarrow \hat{\sigma}^*_{\mathrm{m}}$
- "Decoupled storage function"

$$\Phi(u) = \phi + \left[\frac{1}{K} + \frac{\phi}{K^{\mathrm{F}}}\right]u + \frac{1}{K}\hat{\sigma}_{\mathrm{m}}^{*}$$

- **Remark**: Computation of undrained macroscale moduli based on the assumptions:
 - homogeneous stress $\hat{\sigma}_{\mathrm{m}}^*$ within each RVE
 - homogeneous elastic moduli within each micro-constituent

Decoupled consolidation problem

• Space/time variational format: Find $u(\boldsymbol{x}, t) \in \mathbb{U}$ s. t.

$$R(u;\delta u) = L(\delta u) - A(u;\delta u) \quad \forall \delta u \in \mathbb{U}^0$$

$$A(u;\delta u) \stackrel{\text{def}}{=} \int_0^T (d_t \Phi, \delta u) dt + \int_0^T a(u;\delta u) dt + (\Phi(u|_{t=0^+}), \delta u|_{t=0^+})$$
$$L(\delta u) \stackrel{\text{def}}{=} \int_0^T l(\delta u) dt + (\Phi_0, \delta u|_{t=0^+})$$

with

$$a(u;\delta u) \stackrel{\text{def}}{=} -\int_{\Omega} \hat{\boldsymbol{w}} \cdot \boldsymbol{\nabla}(\delta u) \, \mathrm{d}V, \quad l(\delta u) \stackrel{\text{def}}{=} -\int_{\Gamma_{\mathrm{N}}} q_{\mathrm{p}} \, \delta u \, \mathrm{d}S$$

- FE-discretized macroscale and subscale problems (on RVE's) in space/time: p.w. quadratic in space, p.w. constant in time from dG(0) (problem has strongly dissipative character)
- Remark: A priori restriction to algorithmic format ~> No possibility to control time error (only spatial error)

Nested Multiscale Method – FE^2

Macroscale FE-problem on space-time slab Ω × I_n for n = 1, 2, ... using dG(0): Find ⁿū ∈ Ū s.t.

$$\begin{split} \bar{R}\{{}^{n}\bar{u};\delta\bar{u}\} &= \left[\int_{I_{n}} \bar{l}(\delta u) \,\mathrm{d}t + \Delta t \left(\hat{\bar{\boldsymbol{w}}}\{{}^{n}\bar{u}, \bar{\boldsymbol{\nabla}}{}^{n}\bar{u}\}, \bar{\boldsymbol{\nabla}}\delta\bar{u} \right) \right] \\ &- \left(\left[\bar{\Phi}\{{}^{n}\bar{u}, \bar{\boldsymbol{\nabla}}{}^{n}\bar{u}\} - {}^{n-1}\bar{\Phi} \right], \delta\bar{u} \right) - \left(\left[\bar{\bar{\Phi}}\{{}^{n}\bar{u}, \bar{\boldsymbol{\nabla}}{}^{n}\bar{u}\} - {}^{n-1}\bar{\bar{\Phi}} \right], \bar{\boldsymbol{\nabla}}\delta\bar{u} \right) \\ &= 0, \quad \forall \delta\bar{u} \in \bar{\mathbb{U}}^{0}. \end{split}$$

• Homogenized quantities:

$$\bar{\hat{\boldsymbol{w}}}\{\bar{u}, \bar{\boldsymbol{\xi}}\} = \langle \hat{\boldsymbol{w}}(u, \boldsymbol{\xi}) \rangle_{\Box} , \quad \bar{\Phi}\{\bar{u}, \bar{\boldsymbol{\xi}}\} = \langle \Phi(u) \rangle_{\Box}$$
$$\bar{\bar{\Phi}}\{\bar{u}, \bar{\boldsymbol{\xi}}\} \stackrel{\text{def}}{=} \langle \Phi(u) \left[\boldsymbol{x} - \bar{\boldsymbol{x}}\right] \rangle_{\Box}$$

• **Remark**: "Quasi-separation" of scales inherent in "2nd order storage function" $\bar{\Phi}\{\bar{u}, \bar{\xi}\}$, cf. KOUZNETSOVA ET AL. (2002)

• Remark:
$$\bar{\bar{\Phi}}{\{\bar{u},\bar{\xi}\}} \to \mathbf{0}$$
 when $l_{\text{RVE}} \to 0$

Nested Multiscale Method – FE^2

- SVE-problem: Dirichlet b.c. for pressure nu.
- Subscale FE-problem on space-time slabs Ω_□ × I_n for n = 1, 2, ... using dG(0):

For given ${}^{n}u^{\mathrm{M}}(\bar{\boldsymbol{x}};\boldsymbol{x},t)$, find ${}^{n}u^{\mathrm{s}} \in \mathbb{U}_{\Box}^{0}$ s. t.

$$R_{\Box}({}^{n}u^{\mathrm{M}} + {}^{n}u^{\mathrm{s}}; \delta u^{\mathrm{s}}) = \int_{I_{n}} l_{\Box}(\delta u^{\mathrm{s}}) \,\mathrm{d}t - \Delta t \,a_{\Box}({}^{n}u^{\mathrm{M}} + {}^{n}u^{\mathrm{s}}; \delta u^{\mathrm{s}}) - \langle \left[\Phi({}^{n}u^{\mathrm{M}} + {}^{n}u^{\mathrm{s}}) - {}^{n-1}\Phi \right] \delta u \rangle_{\Box} = 0, \quad \forall \delta u^{\mathrm{s}} \in \mathbb{U}_{\Box}^{0}$$

$$a_{\Box}(u;\delta u) \stackrel{\text{def}}{=} - \langle \hat{\boldsymbol{w}} \cdot \boldsymbol{\nabla} \delta u \rangle_{\Box}, \quad l_{\Box}(\delta u) = 0$$

• **Remark**: For the coupled problem it is possible to choose different prolongation conditions for different fields

Macroscale algorithmic tangent operators

• Linearization of macroscale problem for each space-time slab → bilinear but generally *non-symmetric* form

$$\bar{R}'\{\bullet;\delta\bar{u},\,\mathrm{d}\bar{u}\} = -\int_{\Omega} \delta\bar{u}\bar{C}\,\mathrm{d}\bar{u}\,\mathrm{d}V - \int_{\Omega} \delta\bar{u}\bar{B}\cdot\bar{\nabla}(\,\mathrm{d}\bar{u})\,\mathrm{d}V \\ + \int_{\Omega} \bar{\nabla}(\delta\bar{u})\cdot\left[\Delta t\,\bar{Y} - \bar{\bar{C}}\right]\,\mathrm{d}\bar{u}\,\mathrm{d}V \\ - \int_{\Omega} \bar{\nabla}(\delta\bar{u})\cdot\left[\Delta t\,\bar{K} + \bar{\bar{B}}\right]\cdot\bar{\nabla}(\,\mathrm{d}\bar{u})\,\mathrm{d}V$$

• Macroscale tangent operators defined by

$$d\bar{\hat{w}} = \bar{Y} d\bar{u} - \bar{K} \cdot d\bar{\xi}$$
$$d\bar{\Phi} = \bar{C} d\bar{u} + \bar{B} \cdot d\bar{\xi}$$
$$d\bar{\Phi} = \bar{C} d\bar{u} + \bar{B} \cdot d\bar{\xi}$$

• Note: $\overline{\overline{B}}$ 3rd order tensor

Macroscale algorithmic tangent operators

• Algorithmic tangent operators $\bar{C}, \bar{Y}, \bar{B}, \bar{\bar{C}}, \bar{K}, \bar{\bar{B}}$ computed via sensitivity fields $\hat{u}_{\bar{u}}^{s}, \hat{u}_{\bar{\xi}}^{s(j)} \in \mathbb{U}_{\Box}^{0}$ on RVE.

Example:

$$(\bar{\boldsymbol{K}})_{ij} = \langle (\boldsymbol{K})_{ij} \rangle_{\Box} + \left\langle (\boldsymbol{K} \cdot \boldsymbol{\nabla} \hat{u}_{\bar{\xi}}^{\mathrm{s}(j)})_i \right\rangle_{\Box} - \underbrace{\langle (\boldsymbol{Y})_i [x_j - \bar{x}_j] \rangle_{\Box}}_{"2\mathrm{nd order"}} - \left\langle (\boldsymbol{Y})_i \hat{u}_{\bar{\xi}}^{\mathrm{s}(j)} \right\rangle_{\Box}$$

$$oldsymbol{Y} \stackrel{ ext{def}}{=} rac{\partial \hat{oldsymbol{w}}}{\partial u}, \,\, oldsymbol{K} \stackrel{ ext{def}}{=} -rac{\partial \hat{oldsymbol{w}}}{\partial (oldsymbol{
abla} u)}$$

• Definition of sensitivities in terms of *ansatz* for du^s related to differential changes of \bar{u} and $\bar{\xi}_j \stackrel{\text{def}}{=} (\bar{\nabla}\bar{u})_j$:

$$\mathrm{d}u^{\mathrm{s}}(\boldsymbol{x}) = \hat{u}^{\mathrm{s}}_{\bar{\mathrm{u}}}(\boldsymbol{x})\,\mathrm{d}\bar{\boldsymbol{u}} + \sum_{i=1}^{NDIM} \hat{u}^{\mathrm{s}(i)}_{\bar{\xi}}(\boldsymbol{x})\,\mathrm{d}\bar{\xi}_i$$

Macroscale algorithmic tangent operators

Sensitivity fields are solutions of tangent problems on RVE's:
 (i) Solve for û^s_ū def = ⁿû^s_ū ∈ U⁰_□ from

$$\begin{split} \langle \Phi' \delta u^{\mathrm{s}} \, \hat{u}^{\mathrm{s}}_{\bar{\mathrm{u}}} \rangle_{\Box} &- \Delta t \, \langle \boldsymbol{\nabla} [\delta u^{\mathrm{s}}] \cdot \boldsymbol{Y} \hat{u}^{\mathrm{s}}_{\bar{\mathrm{u}}} \rangle_{\Box} + \Delta t \, \langle \boldsymbol{\nabla} [\delta u^{\mathrm{s}}] \cdot \boldsymbol{K} \cdot \boldsymbol{\nabla} [\hat{u}^{\mathrm{s}}_{\bar{\mathrm{u}}}] \rangle_{\Box} \\ &= - \, \langle \Phi' \delta u^{\mathrm{s}} \rangle_{\Box} + \Delta t \, \langle \boldsymbol{\nabla} [\delta u^{\mathrm{s}}] \cdot \boldsymbol{Y} \rangle_{\Box} \,, \\ &\forall \delta u^{\mathrm{s}} \in \mathbb{U}^{0}_{\Box}. \end{split}$$

(ii) Solve for $\hat{u}_{\bar{\xi}}^{s(i)} \stackrel{\text{def}}{=} {}^n \hat{u}_{\bar{\xi}}^{s(i)} \in \mathbb{U}_{\Box}^0, i = 1, 2, \dots, NDIM$, from

$$\left\langle \Phi' \delta u^{\mathrm{s}} \, \hat{u}_{\bar{\xi}}^{\mathrm{s}(i)} \right\rangle_{\Box} - \Delta t \left\langle \boldsymbol{\nabla} [\delta u^{\mathrm{s}}] \cdot \boldsymbol{Y} \, \hat{u}_{\bar{\xi}}^{\mathrm{s}(i)} \right\rangle_{\Box} + \Delta t \left\langle \boldsymbol{\nabla} [\delta u^{\mathrm{s}}] \cdot \boldsymbol{K} \cdot \boldsymbol{\nabla} [\hat{u}_{\bar{\xi}}^{\mathrm{s}(i)}] \right\rangle_{\Box}$$
$$= - \left\langle \Phi' \delta u^{\mathrm{s}} [x_i - \bar{x}_i] \right\rangle_{\Box} + \Delta t \left\langle \boldsymbol{\nabla} [\delta u^{\mathrm{s}}] \cdot \boldsymbol{Y} \left[x_i - \bar{x}_i \right] \right\rangle_{\Box} - \Delta t \left\langle \boldsymbol{\nabla} [\delta u^{\mathrm{s}}] \cdot \boldsymbol{K} \cdot \boldsymbol{e}_i \right] \right\rangle_{\Box}$$
$$\forall \delta u^{\mathrm{s}} \in \mathbb{U}_{\Box}^{0}.$$

• **Remark**: $\hat{u}_{\bar{u}}^{s} = 0$ for stationary problems

Consolidation of pavement layer – coupled model

• Plane consolidation of symmetrically loaded (semi-infinite) layer of asphalt-concrete. RVE consisting of 2 × 2 unit cells. Dirichlet b.c. adopted.

FE^2 algorithm: Results

• Pore pressure field on top of deformed mesh after 0.0001 sec. (a) Single-scale analysis. (b) Multiscale analysis: macroscale solution and RVE- solutions at three different macroscale quadrature points.

FE^2 algorithm: Results, cont'd

Comparison of different particle distributions inside RVE: one particle in the center (particle-centered topology) vs. 4 quarters of a particle in the corners of a unit cell (matrix-centered topology). (a) Average pore pressure in the selected region Ω_A. (b) Average vertical (x₂-) displacement the selected region Ω_A.

Computational homogenization of porous media

Sandström, Larsson, Johansson, Runesson

- Up-scaling and computational homogenization of flow in porous media coupled to solid skeleton deformation
 - \rightsquigarrow Improved modeling for
 - deformation-dependent permeability
 - gas-fluid mixtures

. . .

- Initial analysis: Homogenization of porous media flow (rigid solid)
 - Macroscale: Darcy-type flow

$$\bar{\boldsymbol{q}}\cdot\bar{\boldsymbol{\nabla}}=0$$

where $ar{q}$ is seepage

$$-[\boldsymbol{\sigma}^{\mathrm{v}}(\boldsymbol{v}\otimes\boldsymbol{\nabla})-p\boldsymbol{I}]\cdot\boldsymbol{\nabla} = \boldsymbol{0}$$
$$\boldsymbol{v}\cdot\boldsymbol{\nabla} = \boldsymbol{0}$$

v velocity p pressure and σ^{v} viscous stress

Macroscale permeability

- Prolongation: Ensure prescribed macroscale pressure gradient $\bar{\xi}$
- Homogenization $\rightsquigarrow \bar{q} = \bar{n} \langle v \rangle_{\Box}$ *n* porosity
- Consider Linear Stokes' law, i.e.

$$oldsymbol{\sigma}^{\mathrm{v}}=2\mu\left[oldsymbol{v}\otimesoldsymbol{
abla}
ight]^{\mathrm{sym}}$$

• Macroscale constitutive relation for seepage velocity (flux) \bar{q} in terms of pressure gradient $\bar{\xi} \stackrel{\text{def}}{=} \bar{\nabla} \bar{p}$:

$$ar{q}=-ar{K}\cdotar{\xi}$$

Dirichlet conditions on $oldsymbol{v}$

Prescribed
$$\boldsymbol{\nabla} \tilde{p} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$$

Neumann conditions on $t^{\scriptscriptstyle ext{V}}$

Prescribed
$$\boldsymbol{\nabla} \tilde{p} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$$

Periodic conditions

Prescribed
$$\boldsymbol{\nabla} \tilde{p} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$$

Macroscale permeability tensor

• Nonlinear fluid $\rightsquigarrow FE^2$

Sintering of hardmetal (WC-Co system)

Öhman, Runesson, Larsson

• WC-particles surrounded by "matrix" of Co, initial pore-space $\sim 20 - 40\%$ Note: Intrinsically time-dependent deformation + solid diffusion + melt Co

- Sintering driven by surface tension Co-porespace from initial precompacted porosity (inhomogeneous relative density, ρ'_0)
- Subscale constitutive modeling:
 - Co-binder: Incompressible, non-Newtonian (visco-plastic) flow → nonlinear Stokes'
 - WC-particles: "Rigid" → incompressible, Newtonian flow with "large" viscosity

$$oldsymbol{\sigma}_{
m dev}(oldsymbol{d}) = 2\mu f(d_{
m e})oldsymbol{d}_{
m dev}, \quad d_{
m e} \stackrel{
m def}{=} \sqrt{rac{2}{3}}|oldsymbol{d}_{
m dev}|$$

Macroscale momentum balance.
 Note: Finite macroscale compressibility due to shrinking pore-space

Model-based homogenization of viscous sintering

Figure 1: Evolution of free surface within a typical RVE

RVE-problem with Dirichlet b.c. (example), "driven" by macroscale rate-of-deformation d
 → subscale velocity: v = v^M(d) + v^s
 For given d
 , solve for v^s ∈ V^(D)_□, p ∈ P_□:

$$a_{\Box}(\boldsymbol{v}^{\mathrm{M}}(\bar{\boldsymbol{d}}) + \boldsymbol{v}^{\mathrm{s}}; \delta \boldsymbol{v}^{\mathrm{s}}) + b_{\Box}(p, \delta \boldsymbol{v}^{\mathrm{s}}) = l_{\Box}(\delta \boldsymbol{v}^{\mathrm{s}}) \quad \forall \delta \boldsymbol{v}^{\mathrm{s}} \in \mathbb{V}_{\Box}^{(\mathrm{D})}, \\ b_{\Box}(\delta p, \boldsymbol{v}^{\mathrm{M}}(\bar{\boldsymbol{d}}) + \boldsymbol{v}^{\mathrm{s}}) = 0 \quad \forall \delta p \in \mathbb{P}_{\Box}.$$

 $l_{\Box}(\delta \boldsymbol{v}^{s})$: loading by "sintering stresses" = surface tension tractions on $\Gamma_{\Box}^{\text{pore}}$

- Surface-tension driven microflow of single "unit cell" RVE
 - macroscopically rigid (RVE-boundaries are rigid)
 - macroscopically isochoric

Simulation of sintering

• Macroscale problem for "free" (special case) sintering obtained from variationally consistent macro-homogeneity condition

$$\bar{a}\{\bar{\boldsymbol{v}};\delta\bar{\boldsymbol{v}}\}\stackrel{\text{def}}{=}\int_{\Omega}\bar{\boldsymbol{\sigma}}\{\bar{\boldsymbol{d}}\}\colon\delta\bar{\boldsymbol{d}}\,\mathrm{d}\bar{v}=0$$

Energy-conjugated macroscale stress: $\bar{\sigma} = \frac{1}{|\hat{\Omega}_{\Box}|} \int_{\hat{\Gamma}_{\Box}} (\boldsymbol{t} \otimes [\boldsymbol{x} - \bar{\boldsymbol{x}}])^{\text{sym}} da$ $\bar{\boldsymbol{x}} = \text{center of RVE}$

- FE² of free sintering for non-Newtonian microflow
 - homogeneous initial relative density (but lower boundary is artificially fixed)
 - non-homogeneous initial relative density, truly unrestrained macroscopic boundaries, single-phase
 - non-homogeneous initial relative density, truly unrestrained macroscopic boundaries, two-phase (with near-rigid particles)
- Modeling and computational strategies of surface tension: ZHOU & DERBY, PERIC ET AL., JAVILI & STEINMANN among others

References

Larsson, Runesson, Su. Variationally consistent computational homogenization of transient heat flow. *IJNME* 2010: 1659–1686

Larsson, Runesson, Su. Computational homogenization of uncoupled consolidation in micro-heterogeneous porous media. *IJNAMG*

Su, Larsson, Runesson. Computational homogenization for quasistatic poromechanics problems. In *Computational methods for coupled problems in engineering III*. 2009.

Sandström, Larsson, Johansson and Runesson. Multiscale modeling of porous media. *Proceedings* of the 23rd Nordic seminar on computational mechanics. 2010: 177-180.

Öhman, Runesson, Larsson. Multiscale modeling of sintering in hard metal. In *Proceedings of the 23rd Nordic seminar on computational mechanics*. 2010: 334-336.