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Course outline

Lecture 1
Classical homogenizatian mechanics Concepts and assumptions

Introduction to computational homogenization - Lineasaaty

Lecture 2

Computational homogenization for nonlinear problems -tdles
macro-micro computations (basis for HE

The classical prolongation conditions on a Statisticalivioe Element
(SVE)

The concept of weak periodicity on SVE (novel)

Lecture 3

Computational homogenization for nonlinear problems 2 #h error
estimation and adaptivity

Outlook - Selected research at Chalmers University
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{omogenization in material mechanics - Which discipline?

Mathematics
Statistics - stochastics
Functional analysis - variational methods

A posteriori error analysis
Material physics and science

Quantum physics and atomistics

Material-speci c length scales - Scanning techniques
Continuum mechanics - general and material modeling
Experimental technigues

Computational methods

FE
Adaptive meshing
Parallel computation
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Lecture 1: Contents

Motivation for multiscale modeling — "appetizers"
Approaches to multiscale modeling

Classical homogenization — Concepts and assumptions

Statistical Volume Element (RVE) versus RepresentatiMernve Element
(RVE)

Macrohomogeneity (Hill-Mandel) condition
Classical prolongation conditions: DBC, TBC, PBC
Voigt and Reuss bounds

Statistical bounds [without con dence intervals]

Introduction to computational homogenization — Lineasgtty
Effective stiffness tensor for DBC, (TBC, PBC)
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Macroscopic versus multiscale modeling

Macrolevel: Balance equations of mass, momentum, eneigyexpressed in
" ux" quantities, e.g. momentum equation

P r =f Cartesian components: @:fi

Macroscopic constitutive modeling

P=PMH:k); H®¥u r =F |

No explicit account of material (micro)structure, rathaplicit via
evolution ofinternal variablesk (e.g. plastic strain, texture tensors, etc.),
ODE's or PDE's
Calibration from macroscale experiments or subscale nmuglel
' "upscaling"
Multiscale constitutive modeling PfH g
Subscale modeling within RVE homogenization
Calibration from macroscale experiments or further lowdrssale
modeling ! "upscaling"

Always boils down to modeling on (lowe add) [nitio does not exjst!
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Length scales

Example: Multiscale modeling of polycrystalline metals

+ Objective: Derive ansatz-free,
physics-based, predictive models
2 of macroscopic behavior A
¥g Engineering
applications
£ 3 |oooooooc R . bgrai l \
.............. ~ «—— Continuum
...... ~ structures
"""" Dislocation _ _ :
...... dynamics *— Discrete or linear elastic
) e
c | lattice . Quantum mechanical or atomistic
defects, EoS
i nm e mm ore
¥ length SIMM 12/08

"Top-down" strategy
Physics at given (lower) scale, "scale of modeling"
Engineering output at macroscale
Mathematical bridging of scales via accuracy assessmeladaptive
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Multiscale modeling - Bridging the scales?

"Vertical" bridging: Computational homogenization
Homogenization on RVE, "prolongation conditions" part ajahel
Model adaptivity to account for local defects

"Horizontal" bridging: Concurrent multiscale modeling

Models at different scales coexisting in adjacent partfiefdomain (within
the component), model coupling along "bridging" domains

Model adaptivity to account for local defects

Macroscopi
model

(9]

Mesoscale Atomic
model quantum
A A
Y Y

Runesson/Larsson, Geilo 2011-01-24 — p.7/56



Dept. of Applied Mechanics

Modeling of selected material classes

Nano-material$’rototype material: Graphene (single C-atom layer)
Macroscale Hyperelasticity

Mesoscale Tershoff-Brenner pair-wise interatomic potential (undés
distance and angles), Quasi-Continuum concept for canstggatomic
motion

Polycrystalline metals

Macroscale Viscoplasticity with (complicated) mixed
Isotropic-kinematic-distortional hardening

MesoscaleCrystal (visco)plasticity within grains, colonies, eggain
boundary interaction from crystal orientations"Hall-Petch"-type relation
for yield stress. Upscaling to macroscopic yield surface

PM-products
Macroscale Viscoplasticity based on mean-stress dependent yiefdir

MesoscaleSurface tension along particle/pore interface, moving
boundaries of partly (melt) binder metal (liquid-phasdesimg)
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Modeling of selected material classes

Porous media saturated with pore uid
Macroscale Porous Media Theory

MesoscaleParticles in matrix, homogenization of subscale trartsien
"double time-scales", incomplete scale separation cgHéx order"
homogenization scheme in the spatial domain

Microscale Modeling of permeability from Stokes' ow, dependence on
deformable "particles”
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"Appetizer”. Duplex Stainless Steel

Multiscale modeling of two-phase (or three-phase) Dupleriess Steel
(DSS) [Sandvik Materials Technology, Sweden]

Micro-inhomogeneity: Grain structure, phase structure

Subscale constitutive modeling: Large strain crystaltpdayg, possibly with
gradient enhancement to account for grain-size (Hall{beatffect

Macroscale

Homogenization:
Dimensional reduction
3D crystal structuré
plane stresappropriate

Mesoscale

\oronoi (subscale 1) de n|t|0n 7
phase and grain
ferte ( ), austenite ( ) Example of application:
Ultrathin foils 0.05
Microscale mm

(subscale 2)

crystal structure

= Note: A priori homogenized
FCC BCC to subscale 1
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FE? applied to thin DSS-membrane

Dimensional reduction on subscale:
macroscale plane stregkeft gure)
subscale plane stregaght gure):

eq = Subscale Mise_s stress Macroscale response
eq = Macroscale Mises stress

160

-
-
-
-
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= =

o] o N

o o o
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shear load

[e2]
o
T

401 — macroscale plane stress

- - subscale plane stress

201

1 1 1 1 1
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tip displacement

LiLLeacka ET AL.: Int. J. Multiscale Comp. Engng2007] Note: No adaptivity
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Grain Iinteraction — size effect

Subscale modeling: Gradient-enhanced theory of crysist@yplasticity.
Dirichlet b.c. of RVE corresonding to simple sheatr.

Left gure: Microhard (clamped) grain boundaridgight Grain boundary
Interaction dependent on crystal misalignment
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g
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"Appetizer”. Atomistic systems - graphene

Ph.D. project by Kaveh S
Unique stable 2D lattice, single atom layer
Nobel prize 2011

Old Material New Discovery

J.S.Bunch et al. Science 315,490(07)
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Atomistic systems - graphene

Atomic interaction: Tersoff-Brenner pairwise potentialudes angular
"non-local” attraction (in addition to conventional "ldtaairwise interaction)

]

®
Ni, i ' e s e
- T « Falrwise 1ocal ij-interacuion
k,e® - L 3 6xi
Nik|‘

Angular non-local ik-interaction: .kl
i =i Aj Bi

Rij $ Repulsion; Alj $ Attraction; gij $ Angularterm (1)

Homogenized to continuum: Large strain membrane theorear-atomic"
bending ignored
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Atomistic systems - graphene

Homogenized response for increasing size of "Represeatdnit Lattice"

(RUL): Dirichlet b.c. versus Cauchy-Born (CB) rule, in uea of lattice
anisotropy
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Atomistic systems - graphene

Eperimental validation using AFM test resuioNE ET AL. 2008

AFW Up

membrane ——

‘.”—_z_.;___:;':—;;_?Tu ned TB
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o
-
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Membrane Deformation (nm)

d = L5um
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"Appetizer”. Moisture/chloride transport in concrete

Ph.D. project by Filip Nilenius

Composition: Cement paspermeableBallast stonegmpermeablelnterfacial
Transition Zone (ITZhighly permeable

Transport of chloride and moisture: transient and highlglime@ar coupled
phenomena

High concentration of chloride ions reinforcement corrosion concrete
spalling

Figure 3: RVE
Figure 1: Corroded re-bars Figure 2: Concrete specimen
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Computational results for single RVE

Snapshot of moisture vapor distribution in selected tinag st

Snapshot of chloride concentration distribution in selddtme step

Left Cement paste + ballad¥liddle: Cement paste + ballast + ITRight Pure
cement paste
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"Appetizer”. Consolidation in porous granular media

Multiscale modeling of porous ne-grained granular maéwith pore- uid,
such as asphalt concrete (sand/bitumen mixture with ensokskibnes)

Micro-inhomogeneity: particles in matrix
Note: Intrinsically time-dependent (seepage)

Multiscale material modeling of
asphalt-concrete for road
pavements

ballast———

solid skeleton
fluid-filled pores
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Consolidation of pavement layer

Plane consolidation of symmetrically loaded (semi-ing)itayer of
asphalt-concrete. RVE consisting of 22 unit cells. Dirichlet b.c. adopted.

. 025m
fR =0:8MPa
v v v VvV

|
[
0:15m I
|
| 0:5m "
sym
‘" ()
fRI=0:8 MPa
IRVE
0.15
A 0.1
0.05
0O 0.1 0.2 0.3 0.4 0.5 X 1
(b)
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Periodic versus random substructures

Periodic micro-structure with two selected equivalent Ruwibtained by
"translation” of the centroid (Figure a)

Aperiodic (random) micro-structure with SVE's (Statistid/olume Element,
coined byOsToJa-S.), taken from a single realization of random structure

(Figure b). The microstructure is characterized by the saveeage volume

fractions of matrix and particles as the periodic structure

ORVE: o )
o] 2 Q O 0o OvE: ,,

O OQ O °(
o d o P O
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OQ k/ _ o o
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L/ \ OO © \ .
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(a) (b)
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Representative Volume Element

Macroscale | Subscale

@1 |sub
|/4| N l I RVEI >>| sub

\\s
—
—
e ——

Conditions on size of RVE
Suf ciently small compared to the typical macroscale disien of the
structural component, gy << L MAC
Suf ciently large compared to the typical subscale dimensf
micro-constituents, e.g. grain§"® << L grve .
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Average strain and stress representations

Volume average on,, boundary »

Z
hi, & 1 d
|
StrainH =u r ),N =normal
Z Z
H—Iizzi Hd= i u NAd
JZJ 2 JZJ 2
Stress(P r =1f),t=P N =traction
Z Z Z
. 1 1 1
|’P|2=f Pd= —— t Xd+ —— f X d

I 2] | - I 21,

Special casef = 0 (usual assumption)
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Effective properties — Linear elasticity

Subscale linear elasticity (Lagrangian setting). Smdibaeations:E is
standard elasticity stiffness tensor with major and miryonisetries

P=E:H; H=C:P; E=C

P becomes symmetrical due to ratinor symmetry oft

Only the symmetric part dfl , which may be non-symmetric, contributes
toP

Effective constitutive relation, assurhe !'1 (RVE)
P=E:H; H=C:P
Strain concentration tensor

H(X)=AX):H; X2 , ) E=hM:Hi,
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Effective properties — Linear elasticity, cont'd

Macrohomogeneity
P :Hi, =hiy, :MHi,(= P :H)

) E=hAT E:Ai,
Major symmetry!
ChallengeE not computable fot, '1  (RVE) in principle. Common
strategies (in the classical literature on homogenizatom for
sharp bounds on (the eigenvalues}kof

or a good approximation d via a suitable choice of the strain
concentration eldA, or "clever" approximations of the displacement
gradient and stress elds within the RVE
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Homogenization — Effective properties

Closed-form homogenization approaches — linear elagticit

Mean eld methods for matrix-inclusions composites: E$lyedolution for
dilute inclusionsEsHeLBY 1959, Mori-Tanaka-type approaches for
non-dilute composit®ori, TANAKA 1973, HASHIN-SHTRIKMAN 1962,

Classical bounds based on "rule of mixtures": Upper boundT 1887,
TAvLOR 1938 (polycrystalline structure)gaucHy-Born 1890 (atomistic
structure). Lower boun&euss, HiLL 1970, SAacHs 1928 (polycrystalline
structure)

Computational homogenization
Direct FE-computation on "unit cellSuQueT 1985

Bounds based on "virtual statistical testing’Azanov AND HUET 1994,
ZOHDI 2004

Hybrid techniques: Windowing (embedding of "unit cell" arder
domain), .....

Selected texts (classical theor{emAT-NASSER & HORI (1993), SUQUET (1997),
TORQUATO (2002), OSTOJA-STARZEWSKI (2007)
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Classical prolongation conditions on SVE

Major issue: Boundary conditions on SVE that ensure besiples
approximation ok

Classical conditions:

Boundary displacements generated by a macroscale strgaenoted the
DBC-problem) — Dirichlet b.c.

Boundary tractions generated by a macroscale sRe@enoted the
TBC-problem) — Neumann b.c.

Periodic boundary displacements and antiperiodic trast{denoted the
PBC-problem), realizable in practice only for a cubic in 3gare in 2D)
SVE

Type of "load control" independent on prolongation corm8:
Macroscale "strain control'™H i, is prescribed to valull
Macroscale "stress controlP i, is prescribed to valulP

Note: Strain control useful for (i) standard displacement-blasE on
macroscale, (ii) core-algorithm in constitutive driver filane stress, etc
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Classical prolongation conditions on SVE, contd

Assessment of prolongation conditions
Periodic microstructure: PBC exact fop = L per
Random microstructure: PBC "good"

Remarks:
All prolongation conditions: Convergencelcgfor L, !'1

No prolongation condition gives guaranteed "best" appnattion toE (in
some measurg) Not possible to establish "model hierarchy"

No prolongation condition gives guaranteed upper or loveemial toE for a
single realizatiorof a random microstructure

Possible to obtain guaranteed bounds (within given concaeinterval)
using "statistical sampling" of random microstructure
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Classical prolongation conditions on SVE, contd

Assessment of prolongation conditions: Effect dependsegnesk of
microheterogeneity [Figure fromsToJia-STarRzEWSKI (2007)]

(@)

(b) () (d)

Fluctuations of boundary elds for different mismatch oétehear modulu&. (a) Homogenous:
GP =M =1 (b)GP =M =0:2. (c)GP =GM =0:05. (d)GP =G™ =0:02.
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Hill-Mandel macrohomogeneity condition

"Virtual work" identity for macro- and subscales: Faiatically admissibld® °
andkinematically admissiblel %

|’PO: H 0?2 = |’PO|2 :H‘|O?2

Useful identity

Z Z Z
PO H®, = . pOoHOy= T f u® + t° u%d
JZJZZ 2 2 2
] 2]

Decomposition into "macro” and " uctuation" parts
u%= y°% H OO[X X J+(u$)%® ) (H s)ood:ef H 90 H 0? NH %)%, = 0
P=P%+(P%% KP4, = 0
: hP®)%: (H %)™, =0
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Hill-Mandel macrohomogeneity condition, cont'd

Alternative classical formulation of HM-condition

Z n , ih " i
tO P N u% u% H™[X X] d=0

2
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Displacement boundary condition (DBC)

Model assumption

u(X)=u+H [X X], or u(X)=0; X 2

) hHi,=H
Note: HM-condition satis ed a priori

Examples of deformed shapes of square
RVE with particles in matrix subjected to DBC. (Left) Undafted RVE. (Middle) Normal displacement
gradient: OnlyH 11 is non-zero. (Right) Shear strain: Orty» = H»1 is non-zero.
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Traction boundary condition (TBC)

Model assumption
t(X)=P N(X) or t3(X)=0; X 2 >

) hPi, =P
Note: HM-condition satis ed a priori
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Periodic boundary condition (PBC)

(3) p(2) (3)
Pmlrlamag X 2 leag
P%Iﬁ, ....... ...................................... d P%)ag Cubic (square) SVE with assumed
i , microperiodicity in coordinate
X 4 directions: , = , [ 3
Image boundary 3
computational domain
? Mirror boundary ,
/sz\ 3)
|3\mI}I’I’ F;(mwr
— L2
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Periodic boundary condition (PBC), contd

Model assumption: Assumed periodicity of displacementuation
us(X *)=us(X ) or [us]=0
Model assumption: Assumed anti-periodicity of traction
t(X )= t(X ) or t(XT)+t(X )=0

Necessary assumption [literature somewhat vague on tm¢| po
Anti-periodict can be interpreted as periodc

Note: HM-condition satis ed a priori

Runesson/Larsson, Geilo 2011-01-24 — p.35/56



CHALMERS Dept. of Applied Mechanics
Classical energy bounds

Bounds
"Apparant” stiffness (compliance) for single SVE (singtalization),
Effective properties based on "numerical statisticalngst

Tool: Fundamental extremal properties

DBC with strain control
TBC with stress control
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DBC — Extremal properties

Admissible spaces
Kinematically admissible displacements

U5 = fu "sufcientlyregular; u=H [X X]on »g

U5° = fu "sufciently regular; u = 0on »,g

Statically admissible stresses
S = fP "sufcientlyregular, P r =0in ,g

Fundamental DBC-problem with strain control: Fimd2 U, which, for given
H , solves

fH:E: Hi, =0 8 u2UY®°

def

Post-processing?D = hPi,
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DBC — Extremal properties, cont'd

Min of potential energy

2)  20) 80212 2(0)% M iE:Ai,
Strain energy obtained obtained from min df (u) using HM-condition

1
D(H) ¥ H 'E; 1 H

Min of complementary potential energy
LP) LB 8P2sy P E 1h|3 C:Pi, hPi,:H

Combining min-properties gives fundamental result to lExdus constructing
bounds:

Pi, : H %Hﬁ:C:Iﬁiz D(H) %M:E:ﬁiz sn2UD; 8P 25D
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TBC — Extremal properties

Admissible spaces
Kinematically admissible displacements

UY = fu "suf ciently regular®; u(X )= 0g
Statically admissible stresses
S'Z\‘ = fP "sufcientlyregular, P r =0in ,;t=P N on >0

Fundamental TBC-problem with stress control: Fin@ U} which, for given
P, solves
fH :E: Hi, =P :hHi, 8u2U}

def

D

Post-processingd N H i,
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TBC — Extremal properties, cont'd

Min of complementary potential energy
NP) NPy sP2s) (B E 1“3 C:Pi,

Complementary strain (stress) energy obtained from min®f(P ) using

HM-condition

1
NP)E P C) :P

Min of potential energy
Yy o) se2u; @) E wiERi, P

Combining min-properties gives fundamental result to lExdus constructing
bounds:

P i, %M:E:ﬁiz N(P) %Hﬁ:C:Iﬁiz gn 2 UY; 8P 2 S)
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Voigt (upper) and Reuss (lower) bounds

(Reuss eld)

Prescribed traction Prescribed traction

(Voigt eld)

~

Prescribed displ. Prescribed displ.

\Voigt (Taylor) assumptiofi] (X ) = H ; 8X

1

1 . .
S(H) §H ‘hEi, :H = §H EyHE YH) E ¥ e,
Reuss (Sachs) assumptiBr{X ) = P; 8X
N 1 . - 1 R _def Ry~ R def .
> (P) EP.hClz.P—éP.CZ.P- >, (P); C, = ICis
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Voigt and Reuss bounds, cont'd

Only info used is volume fraction of microconstituents Valid also for
effective properties (wheh, !'1 ) ) Hill-Reuss-Voigt bounds
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Bounds for single SVE-realization

Fundamental inequality for DBC-problem can be used to alddaunds for
strain energy

RH) YH) PMH) J(H) 8H 2R®?®

Fundamental inequality for TBC-problem can be used to aldaunds for
stress energy

V(P)  P(P) N(P)  R(P) 8P 2R
Note: All stiffness-compliance tensors can be expressed inthddmental
tensors:

Eg from the DBC-problem

Cy from the TBC-problem
Ey = IEi,
C5 = ICi,

and their inverses
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Bounds on effective stiffness

Aim for guaranteed upper and lower bounds diiH ) $ E
Identities for effective properties:

(H)= lim  N(H)= lm 2(H)= lm  5(H)

— : D — : — : N
(P)= lelr!nl 2 (P)= lelr!nl 2 (P) = lelr!nl 2 (P)
Strategy to obtain upper bound: Introduce "large” SVE witles 5y > L »

= ' D = |
(H)= m @&fHit

Strategy of "numerical testing" using ergodicity argunseAazANOV AND HUET
(1994)

(H) Jim = ZfH:lig=E ZfH kg
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Bounds on effective stiffness, cont'd

Approximation forN < 1

(H)  (H) with “°(H) ° Y(H)

and

1 1 X
D V(H )% SH 'E, ':H with E; ¥ o E5 (1)
i=1

Similar arguments for lower bound, involving Legendre sfanmations
(H)y "(H) with H) N RH)

and

1
NRH)E ZHE, TiH with By T F

1
2 N
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Bounds on effective stiffness, cont'd

Summary
> “(H) (H) 2 Y(H)

"V" and "R" denote "Voigt-type sampling" and "Reuss-typengding”,
respectively
Remarks:
Bounds become more reliable when number of "samples" iserea
Guaranteed bounds within con dence intervals can be cootstd

assuming Gaussian distribution (manuscript in preparatiew result,
even for elasticity!
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Strategy of "numerical statistical testing”

Single realization o for large domain (»y: N subdomains of the same size
obtained by subdivision into subdomains of dize, f 5. (! o)

Single domain , of sizeL,: N different realizations in ,,f 5 (!;)g}

Ergodicity and statistical uniformityf. 5. (! ¢)g1 f o)
!
_________ 2 (1)
0?0 240 23
1 ? 2;l§ 2211 2 (1 2)
2?0 20
g | 2(11)
1
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Computational results of bounds

Single realization of random microstructure for differ&WE-sizes: Stiff (hard)
particles (p) in a compliant (soft) matrix materiéd, = 15E, , = 0:3and
Em = Eref, m = 0:49. Volume fractionn, = 0:40.
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Computational results of bounds, cont'd

Convergence of mean value of strain energy{H A) with SVE-size. Uniaxial
strainfH A =e; €e;

—O— Dirichlet-Voigt
2.67 —8- Periodic-\Voigt
4 Periodic-Reuss
—— Neumann-Reuss

2 (H »)
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Computational results of bounds, cont'd

Development of the number of realizatioNs required to estimate, (H )
within a given con dence interval, with SVE-size

3500 ; N _
—0— Dirichlet-Voigt
20000 —&— Periodic-\Voigt
_‘ A Periodic-Reuss
— —k— Neumann-Reuss
2500
2000
Z
1500
1000
500
O 1
1.25 2.5 3.75 5 6.25 7.5 8.75 10
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Computational results of bounds, cont'd

Convergence of mean value of strain energy{H g ) with SVE-size. Pure
shearH g = %[el e, + e, ep]. Since the results are scaled by the

modulus of elasticity for the matrix materid,, the ratio o(Hg) =Eres
may become smaller than unity

1.5

—6— Dirichlet-Voigt
= Per!od!c-Vmgt
- Periodic-Reuss
—— Neumann-Reuss

1.4r
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Computational results of bounds, cont'd

Development of the number of realizatioNs required to estimate, (H g)
within a given con dence interval, with SVE-size

10000
—O— Dirichlet-Voigt
—8- Periodic-\Voigt
/x Periodic-Reuss

8000 —%— Neumann-Reuss

4000

20001

1.25 2.5 3.75 5 6.25 7.5 8.75 10
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Computational homogenization — Introduction

Aim: establish most general expression Egr for given prolongation
conditions

Upscaling for linear problems: Need to establish

the strain concentration tens&(X ), X 2 ,,inH (X )= A(X):H in
terms of the macroscale and uctuation elds,

the RVE-problem from whiclA can be computed,

E, using the eldsE(X ) andA(X).

Note: For linear problem# (X ) is independent of the actull

) E, can be established once and for all (for a given realizatdB)S
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Effective stiffness for DBC

SVE-problem (general): Find 2 U5 which, for given value o , solves
fH:E: Hi, =0 8 u2UY®°
Additive split
u(X)=uMX)+us(X); uMX)=H X X X2 ;

: HS:E: Hi, = hHM:E: Hi, 8 u2Ud®°
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Effective stiffness for DBC, cont'd

Unit displacement elds
X -
uMX)=H X X]=  oa"IxHH; ) eV =g g [X X]
v X A M) M(i )
, H = yM r = H = |4 Hij ) |4 = € €
N
03U ) (X YH;

AnsatzZor uctuationu®>(X )=

X ) )
- HX)= H+HSX) =1+ B ) #M"1:H = AX): H

I
SVE-problem must hold for any choice ®#f ; Problem for unit elds: Find

asW) 2 U3 fori;j =1;2;NDIM s.t.

Hiis(ij):E: Hi, = hlqM(ij):E: Hi, = he g :E: Hiy 8u2U5);O
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Effective stiffness for DBC, cont'd

Effective stiffness tensor
P=Hhi;=hE:Hi; = |E_{éal ' H
- E,
E- = hE:AI

X ) X )
= E, + rE:ﬁS('”iz e € = rE:Iq(”)iz e €

Remarks:
Major symmetry oft, ensured by HM-condition

Taylor assumptiont} W) = O ( uctuation omitted) ! No SVE-problem
to be solved

|sotropic microconstituents does not ascertain iSotrapaCroscopic
response for single (or even averaged) realizations
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