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Course outline

� Lecture 1
� Classical homogenizationin mechanics- Concepts and assumptions
� Introduction to computational homogenization - Linear elasticity

� Lecture 2
� Computational homogenization for nonlinear problems - Nested

macro-micro computations (basis for FE2)
� The classical prolongation conditions on a Statistical Volume Element

(SVE)
� The concept of weak periodicity on SVE (novel)

� Lecture 3
� Computational homogenization for nonlinear problems - FE2 with error

estimation and adaptivity
� Outlook - Selected research at Chalmers University
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Homogenization in material mechanics - Which discipline?

� Mathematics
� Statistics - stochastics
� Functional analysis - variational methods
� A posteriori error analysis

� Material physics and science
� Quantum physics and atomistics
� Material-speci�c length scales - Scanning techniques

� Continuum mechanics - general and material modeling
� Experimental techniques
� Computational methods

� FE
� Adaptive meshing
� Parallel computation
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Lecture 1: Contents

� Motivation for multiscale modeling – "appetizers"
� Approaches to multiscale modeling
� Classical homogenization – Concepts and assumptions

� Statistical Volume Element (RVE) versus Representative Volume Element
(RVE)

� Macrohomogeneity (Hill-Mandel) condition
� Classical prolongation conditions: DBC, TBC, PBC
� Voigt and Reuss bounds
� Statistical bounds [without con�dence intervals]

� Introduction to computational homogenization – Linear elasticity
� Effective stiffness tensor for DBC, (TBC, PBC)
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Macroscopic versus multiscale modeling

� Macrolevel: Balance equations of mass, momentum, energy, etc., expressed in
"�ux" quantities, e.g. momentum equation

� �P � �r = �f Cartesian components:�
@�Pij

@�X j
= �f i

� Macroscopic constitutive modeling:
�P = �P ( �H ; k� ); �H def= �u 
 �r = �F � I
� No explicit account of material (micro)structure, rather implicit via

evolution ofinternal variablesk� (e.g. plastic strain, texture tensors, etc.),
ODE's or PDE's

� Calibration from macroscale experiments or subscale modeling
! "upscaling"

� Multiscale constitutive modeling: �P f �H g
� Subscale modeling within RVE! homogenization
� Calibration from macroscale experiments or further lower subscale

modeling ! "upscaling"
� Always boils down to modeling on (lowest) scale,ab initio does not exist!
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Length scales

� Example: Multiscale modeling of polycrystalline metals

� "Top-down" strategy
� Physics at given (lower) scale, "scale of modeling"
� Engineering output at macroscale
� Mathematical bridging of scales via accuracy assessment and adaptive

choice of "scale of modeling"
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Multiscale modeling - Bridging the scales?

� "Vertical" bridging: Computational homogenization
� Homogenization on RVE, "prolongation conditions" part of model
� Model adaptivity to account for local defects

� "Horizontal" bridging: Concurrent multiscale modeling
� Models at different scales coexisting in adjacent parts of the domain (within

the component), model coupling along "bridging" domains
� Model adaptivity to account for local defects

P

Atomic
quantum

Mesoscale
model

Macroscopic
model
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Modeling of selected material classes

� Nano-materialsPrototype material: Graphene (single C-atom layer)
� Macroscale: Hyperelasticity
� Mesoscale: Tershoff-Brenner pair-wise interatomic potential (includes

distance and angles), Quasi-Continuum concept for constraining atomic
motion

� Polycrystalline metals
� Macroscale: Viscoplasticity with (complicated) mixed

isotropic-kinematic-distortional hardening
� Mesoscale: Crystal (visco)plasticity within grains, colonies, etc,grain

boundary interaction from crystal orientations; "Hall-Petch"-type relation
for yield stress. Upscaling to macroscopic yield surface

� PM-products
� Macroscale: Viscoplasticity based on mean-stress dependent yield surface
� Mesoscale: Surface tension along particle/pore interface, moving

boundaries of partly (melt) binder metal (liquid-phase sintering)

Dept. of Applied Mechanics

Runesson/Larsson, Geilo 2011-01-24 – p.8/56



Modeling of selected material classes

� Porous media saturated with pore �uid
� Macroscale: Porous Media Theory
� Mesoscale: Particles in matrix, homogenization of subscale transient ;

"double time-scales", incomplete scale separation cf. "higher order"
homogenization scheme in the spatial domain

� Microscale: Modeling of permeability from Stokes' �ow, dependence on
deformable "particles"
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”Appetizer”: Duplex Stainless Steel

� Multiscale modeling of two-phase (or three-phase) Duplex Stainless Steel
(DSS) [Sandvik Materials Technology, Sweden]

� Micro-inhomogeneity: Grain structure, phase structure
� Subscale constitutive modeling: Large strain crystal plasticity, possibly with

gradient enhancement to account for grain-size (Hall-Petch) effect

 

    FCC	                    BCC

Voronoi

RVE

Macroscale

Mesoscale
(subscale 1)
phase and grain
structure
ferrite (   ), austenite (   )

Microscale
(subscale 2)
crystal structure
Note: A priori homogenized
to subscale 1

�

�





� Homogenization:
Dimensional reduction
3D crystal structure!
plane stressappropriate
de�nition ?

� Example of application:
Ultrathin foils � 0.05
mm
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FE2 applied to thin DSS-membrane

Dimensional reduction on subscale:
macroscale plane stress(left �gure)
subscale plane stress(right �gure):
� eq = subscale Mises stress
�� eq = macroscale Mises stress
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� LILLBACKA ET AL.: Int. J. Multiscale Comp. Engng.[2007] Note: No adaptivity
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Grain interaction – size effect

� Subscale modeling: Gradient-enhanced theory of crystal (visco)plasticity.
Dirichlet b.c. of RVE corresonding to simple shear.

� Left �gure: Microhard (clamped) grain boundaries.Right: Grain boundary
interaction dependent on crystal misalignment
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”Appetizer”: Atomistic systems - graphene

Ph.D. project by Kaveh S
� Unique stable 2D lattice, single atom layer
� Nobel prize 2011
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Atomistic systems - graphene

� Atomic interaction: Tersoff-Brenner pairwise potential,includes angular
"non-local" attraction (in addition to conventional "local" pairwise interaction)

 ij = ij �  A ij B ij

 R ij $ Repulsion;  A ij $ Attraction; B ij $ Angular term (1)

� Homogenized to continuum: Large strain membrane theory – "near-atomic"
bending ignored
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Atomistic systems - graphene

� Homogenized response for increasing size of "Representative Unit Lattice"
(RUL): Dirichlet b.c. versus Cauchy-Born (CB) rule, in�uence of lattice
anisotropy

a cb
a

e

e

a
b
c

CB

a
b
c

CB
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Atomistic systems - graphene

� Eperimental validation using AFM test result,HONE ET AL. 2008
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”Appetizer”: Moisture/chloride transport in concrete

Ph.D. project by Filip Nilenius
� Composition: Cement pastepermeable, Ballast stonesimpermeable, Interfacial

Transition Zone (ITZ)highly permeable
� Transport of chloride and moisture: transient and highly nonlinear coupled

phenomena
� High concentration of chloride ions; reinforcement corrosion; concrete

spalling

Figure 1: Corroded re-bars Figure 2: Concrete specimen
Figure 3: RVE
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Computational results for single RVE

� Snapshot of moisture vapor distribution in selected time step

� Snapshot of chloride concentration distribution in selected time step

Left: Cement paste + ballast,Middle: Cement paste + ballast + ITZ,Right: Pure
cement paste
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”Appetizer”: Consolidation in porous granular media

� Multiscale modeling of porous �ne-grained granular material with pore-�uid,
such as asphalt concrete (sand/bitumen mixture with embedded stones)

� Micro-inhomogeneity: particles in matrix
� Note: Intrinsically time-dependent (seepage)

Multiscale material modeling of
asphalt-concrete for road
pavements

ballast

asphalt

fluid-filled pores
solid skeleton
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Consolidation of pavement layer

� Plane consolidation of symmetrically loaded (semi-in�nite) layer of
asphalt-concrete. RVE consisting of 2� 2 unit cells. Dirichlet b.c. adopted.

sym
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Periodic versus random substructures

� Periodic micro-structure with two selected equivalent RVE's obtained by
"translation" of the centroid (Figure a)

� Aperiodic (random) micro-structure with SVE's (Statistical Volume Element,
coined byOSTOJA-S.), taken from a single realization of random structure
(Figure b). The microstructure is characterized by the sameaverage volume
fractions of matrix and particles as the periodic structure.

(a)

RVE: 
 2 1

RVE: 
 2 2

(b)

SVE: 
 2 1

SVE: 
 2 2
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Representative Volume Element.

(a)

(b)

Macroscale Subscale

L RVE

lsub

L MAC

L 2

j �P j

L RVE >> l sub

� Conditions on size of RVE
� Suf�ciently small compared to the typical macroscale dimension of the

structural component,L RVE << L MAC .
� Suf�ciently large compared to the typical subscale dimension of

micro-constituents, e.g. grains,lsub << L RVE .
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Average strain and stress representations

� Volume average on
 2 , boundary� 2

h�i 2
def=

1
j
 2 j

Z


 2

� d


� Strain (H = u 
 r ), N = normal

hH i 2 =
1

j
 2 j

Z


 2

H d
 =
1

j
 2 j

Z

� 2

u 
 N d�

� Stress (� P � r = f ), t = P � N = traction

hP i 2 =
1

j
 2 j

Z


 2

P d
 =
1

j
 2 j

Z

� 2

t 
 X d� +
1

j
 2 j

Z


 2

f 
 X d


Special case: f = 0 (usual assumption)

hP i 2 =
1

j
 2 j

Z

� 2

t 
 X d�
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Effective properties – Linear elasticity

� Subscale linear elasticity (Lagrangian setting). Small deformations:E is
standard elasticity stiffness tensor with major and minor symmetries

P = E : H ; H = C : P ; E = C� 1

� P becomes symmetrical due to �rstminor symmetry ofE
� Only the symmetric part ofH , which may be non-symmetric, contributes

to P
� Effective constitutive relation, assumeL 2 ! 1 (RVE)

�P = �E : �H ; �H = �C : �P

� Strain concentration tensor

H (X ) = A(X ) : �H ; X 2 
 2 ) �E = hA : H i 2
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Effective properties – Linear elasticity, cont'd

� Macrohomogeneity

hP : H i 2 = hP i 2 : hH i 2 (= �P : �H )

) �E = hAT : E : Ai 2

Major symmetry!

� Challenge:�E not computable forL 2 ! 1 (RVE) in principle. Common
strategies (in the classical literature on homogenization) aim for
� sharp bounds on (the eigenvalues) of�E
� or a good approximation of�E via a suitable choice of the strain

concentration �eldA, or "clever" approximations of the displacement
gradient and stress �elds within the RVE
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Homogenization – Effective properties

� Closed-form homogenization approaches – linear elasticity
� Mean �eld methods for matrix-inclusions composites: Eshelby solution for

dilute inclusionsESHELBY 1959, Mori-Tanaka-type approaches for
non-dilute compositeMORI, TANAKA 1973, HASHIN-SHTRIKMAN 1962,

� Classical bounds based on "rule of mixtures": Upper boundVOIGT 1887,
TAYLOR 1938 (polycrystalline structure),CAUCHY-BORN 1890 (atomistic
structure). Lower boundREUSS, HILL 1970, SACHS 1928 (polycrystalline
structure)

� Computational homogenization
� Direct FE-computation on "unit cell"SUQUET 1985

� Bounds based on "virtual statistical testing",HAZANOV AND HUET 1994,
ZOHDI 2004

� Hybrid techniques: Windowing (embedding of "unit cell" in larger
domain), .....

� Selected texts (classical theory):NEMAT-NASSER & HORI (1993), SUQUET (1997),
TORQUATO (2002), OSTOJA-STARZEWSKI (2007)
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Classical prolongation conditions on SVE

� Major issue: Boundary conditions on SVE that ensure best possible
approximation of�E

� Classical conditions:
� Boundary displacements generated by a macroscale strain�H (denoted the

DBC-problem) – Dirichlet b.c.
� Boundary tractions generated by a macroscale stress�P (denoted the

TBC-problem) – Neumann b.c.
� Periodic boundary displacements and antiperiodic tractions (denoted the

PBC-problem), realizable in practice only for a cubic in 3D (square in 2D)
SVE

� Type of "load control" independent on prolongation conditions:
� Macroscale "strain control":hH i 2 is prescribed to value�H
� Macroscale "stress control":hP i 2 is prescribed to value�P

� Note: Strain control useful for (i) standard displacement-based FE on
macroscale, (ii) core-algorithm in constitutive driver for plane stress, etc
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Classical prolongation conditions on SVE, cont'd

� Assessment of prolongation conditions
� Periodic microstructure: PBC exact forL 2 = L per

� Random microstructure: PBC "good"
� Remarks:

� All prolongation conditions: Convergence to�E for L 2 ! 1
� No prolongation condition gives guaranteed "best" approximation to�E (in

some measure)) Not possible to establish "model hierarchy"
� No prolongation condition gives guaranteed upper or lower bound to�E for a

single realizationof a random microstructure
� Possible to obtain guaranteed bounds (within given con�dence interval)

using "statistical sampling" of random microstructure
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Classical prolongation conditions on SVE, cont'd

� Assessment of prolongation conditions: Effect depends on degree of
microheterogeneity [Figure fromOSTOJA-STARZEWSKI (2007)]

(a)

(b) (c) (d)

Fluctuations of boundary �elds for different mismatch of the shear modulusG. (a) Homogenous:

G(p) =G(m) = 1 . (b) G(p) =G(m) = 0 :2. (c)G(p) =G(m) = 0 :05. (d) G(p) =G(m) = 0 :02.
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Hill-Mandel macrohomogeneity condition

� "Virtual work" identity for macro- and subscales: Forstatically admissibleP 0

andkinematically admissibleH 00

hP 0 : H 00i 2 = hP 0i 2 : hH 00i 2

� Useful identity

hP 0 : H 00i 2 =
1

j
 2 j

Z


 2

P 0 : H 00d
 =
1


 2

� Z


 2

f � u 00d
 +
Z

� 2

t 0 � u 00d�

f = 0
=

1
j
 2 j

Z

� 2

t 0 � u 00d�

� Decomposition into "macro" and "�uctuation" parts

u 00= �u 00+ �H 00�[X � �X ]+( u s)00 ) (H s)00def= H 00� �H 00; h(H s)00i 2 = 0

P 0 = �P 0+ ( P s)0; h(P s)0i 2 = 0

; h(P s)0 : (H s)00i 2 = 0
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Hill-Mandel macrohomogeneity condition, cont'd

� Alternative classical formulation of HM-condition
Z

� 2

h
t 0 � �P 0 � N

i
�
h
u 00� �u 00� �H 00� [X � �X ]

i
d� = 0
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Displacement boundary condition (DBC)

� Model assumption

u(X ) = �u + �H � [X � �X ]; or u s(X ) = 0; X 2 � 2

) h H i 2 = �H
� Note: HM-condition satis�ed a priori

X 1

X 2

Examples of deformed shapes of square

RVE with particles in matrix subjected to DBC. (Left) Undeformed RVE. (Middle) Normal displacement

gradient: Only �H 11 is non-zero. (Right) Shear strain: Only�H 12 = �H 21 is non-zero.
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Traction boundary condition (TBC)

� Model assumption

t (X ) = �P � N (X ) or t s(X ) = 0; X 2 � 2

) h P i 2 = �P
� Note: HM-condition satis�ed a priori
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Periodic boundary condition (PBC)


 2

� �
2

� +
2

X 1

X 2

L 2

P(1)
imagP(1)

mirr

P(2)
imag

P(2)
mirr

P(3)
imagP(3)

mirr

P(3)
mirr

� Cubic (square) SVE with assumed
microperiodicity in coordinate
directions:� 2 = � �

2 [ � +
2

� Image boundary� +
2

computational domain
� Mirror boundary� �

2
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Periodic boundary condition (PBC), cont'd

� Model assumption: Assumed periodicity of displacement �uctuation

u s(X + ) = u s(X � ) or [[u s]] = 0

� Model assumption: Assumed anti-periodicity of traction

t (X + ) = � t (X � ) or t (X + ) + t (X � ) = 0

� Necessary assumption [literature somewhat vague on this point]
� Anti-periodict can be interpreted as periodicP

� Note: HM-condition satis�ed a priori
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Classical energy bounds

� Bounds
� "Apparant" stiffness (compliance) for single SVE (single realization),
� Effective properties based on "numerical statistical testing"

� Tool: Fundamental extremal properties
� DBC with strain control
� TBC with stress control
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DBC – Extremal properties

� Admissible spaces
� Kinematically admissible displacements

UD
2 = f u "suf�ciently regular"; u = �H � [X � �X ] on � 2 g

UD ;0
2 = f u "suf�ciently regular"; u = 0 on � 2 g

� Statically admissible stresses

SD
2 = f P "suf�ciently regular"; � P � r = 0 in 
 2 g

� Fundamental DBC-problem with strain control: Findu 2 U2 which, for given
�H , solves

hH : E : � H i 2 = 0 8� u 2 UD ;0
2

Post-processing:�P D def= hP i 2
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DBC – Extremal properties, cont'd

� Min of potential energy

� D
2 (u ) � � D

2 (û ) 8û 2 UD
2 ; � D

2 (û ) def=
1
2

hĤ : E : Ĥ i 2

� Strain energy obtained obtained from min of� D
2 (u ) using HM-condition

� D
2 ( �H ) def=

1
2

�H : �E
D
2 : �H

� Min of complementary potential energy

� � D
2 (P ) � � � D

2 (P̂ ) 8P̂ 2 SD
2 � � D

2 (P̂ ) def=
1
2

hP̂ : C : P̂ i 2 � h P̂ i 2 : �H

� Combining min-properties gives fundamental result to be used in constructing
bounds:

hP̂ i 2 : �H �
1
2

hP̂ : C : P̂ i 2 � � D
2 ( �H ) �

1
2

hĤ : E : Ĥ i 2 8û 2 UD
2 ; 8P̂ 2 SD

2
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TBC – Extremal properties

� Admissible spaces
� Kinematically admissible displacements

UN
2 = f u "suf�ciently regular"; u ( �X ) = 0g

� Statically admissible stresses

SN
2 = f P "suf�ciently regular"; � P � r = 0 in 
 2 ; t = �P � N on � 2 g

� Fundamental TBC-problem with stress control: Findu 2 UN
2 which, for given

�P , solves
hH : E : � H i 2 = �P : h� H i 2 8� u 2 UN

2

Post-processing:�H N def= hH i 2
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TBC – Extremal properties, cont'd

� Min of complementary potential energy

� � N
2 (P ) � � � N

2 (P̂ ) 8P̂ 2 SN
2 � � D

2 (P̂ ) def=
1
2

hP̂ : C : P̂ i 2

� Complementary strain (stress) energy obtained from min of� � N
2 (P ) using

HM-condition
� � N

2 ( �P ) def=
1
2

�P : �C
N
2 : �P

� Min of potential energy

� N
2 (u ) � � N

2 (û ) 8û 2 UN
2 ; � N

2 (û ) def=
1
2

hĤ : E : Ĥ i 2 � �P : hĤ i 2

� Combining min-properties gives fundamental result to be used in constructing
bounds:

�P : hĤ i 2 �
1
2

hĤ : E : Ĥ i 2 � � � N
2 ( �P ) �

1
2

hP̂ : C : P̂ i 2 8û 2 UN
2 ; 8P̂ 2 SN

2
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Voigt (upper) and Reuss (lower) bounds

(Reuss �eld)

Prescribed tractionPrescribed traction

(Voigt �eld)

Prescribed displ.Prescribed displ.

� Voigt (Taylor) assumption̂H (X ) = �H ; 8X

� D
2 ( �H ) �

1
2

�H : hEi 2 : �H =
1
2

�H : �E
V
2 : �H def= � V

2 ( �H ); �E
V
2

def= hEi 2

� Reuss (Sachs) assumptionP̂ (X ) = �P ; 8X

� � N
2 ( �P ) �

1
2

�P : hCi 2 : �P =
1
2

�P : �C
R
2 : �P def= � � R

2 ( �P ); �C
R
2

def= hCi 2
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Voigt and Reuss bounds, cont'd

� Only info used is volume fraction of microconstituents) Valid also for
effective properties (whenL 2 ! 1 ) ) Hill-Reuss-Voigt bounds

�E
R

� �E � �E
V

Dept. of Applied Mechanics

Runesson/Larsson, Geilo 2011-01-24 – p.42/56



Bounds for single SVE-realization

� Fundamental inequality for DBC-problem can be used to obtain bounds for
strain energy

� R
2 ( �H ) � � N

2 ( �H ) � � D
2 ( �H ) � � V

2 ( �H ) 8 �H 2 R3� 3

� Fundamental inequality for TBC-problem can be used to obtain bounds for
stress energy

� � V
2 ( �P ) � � � D

2 ( �P ) � � � N
2 ( �P ) � � � R

2 ( �P ) 8 �P 2 R3� 3

� Note: All stiffness-compliance tensors can be expressed in the fundamental
tensors:
� �E

D
2 from the DBC-problem

� �C
N
2 from the TBC-problem

� �E
V
2 = hEi 2

� �C
R
2 = hCi 2

and their inverses
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Bounds on effective stiffness

� Aim for guaranteed upper and lower bounds on� ( �H ) $ �E
� Identities for effective properties:

� ( �H ) = lim
L 2 !1

� N
2 ( �H ) = lim

L 2 !1
� 2 ( �H ) = lim

L 2 !1
� D

2 ( �H )

� � ( �P ) = lim
L 2 !1

� � D
2 ( �P ) = lim

L 2 !1
� �

2 ( �P ) = lim
L 2 !1

� � N
2 ( �P )

� Strategy to obtain upper bound: Introduce "large" SVE with size L (2 ) > L 2

� ( �H ) = lim
L ( 2 ) !1

� D
(2 ) f �H ; ! 1g

� Strategy of "numerical testing" using ergodicity arguments, HAZANOV AND HUET

(1994)

� ( �H ) � lim
N !1

1
N

NX

i =1

� D
2 f �H ; ! i g = E

� � D
2 f �H ; ~! g

�
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Bounds on effective stiffness, cont'd

� Approximation forN < 1

� ( �H ) � � UB ( �H ) with � UB ( �H ) � � D � V ( �H )

and

� D � V ( �H ) def=
1
2

�H : �E
D � V
2 : �H with �E

D � V
2

def=
1
N

NX

i =1

�E
D
2 (! i )

� Similar arguments for lower bound, involving Legendre transformations

� ( �H ) � � LB ( �H ) with � LB ( �H ) � � N� R ( �H )

and

� N� R ( �H ) def=
1
2

�H : �E
N� R
2 : �H with �E

N� R
2

def=

"
1
N

NX

i =1

h
�E

N
2 (! i )

i � 1
#� 1
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Bounds on effective stiffness, cont'd

� Summary
� N� R

2 ( �H ) � � ( �H ) � � D � V
2 ( �H )

"V" and "R" denote "Voigt-type sampling" and "Reuss-type sampling",
respectively

� Remarks:
� Bounds become more reliable when number of "samples" increase
� Guaranteed bounds within con�dence intervals can be constructed

assuming Gaussian distribution (manuscript in preparation) New result,
even for elasticity!
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Strategy of ”numerical statistical testing”

� Single realization! 0 for large domain
 (2 ) : N subdomains of the same size
obtained by subdivision into subdomains of sizeL 2 , f 
 2 ;i (! 0)gN

1

� Single domain
 2 of sizeL 2 : N different realizations in
 2 , f 
 2 (! i )gN
1

� Ergodicity and statistical uniformity:f 
 2 ;i (! 0)g1
1 � f 
 2 (! i )g1

1


 2 (! 1)


 2 (! 2)

...


 2 (! 1 )

? 
 2 ;4 
 2 ;3

? 
 2 ;1 
 2 ;2

? ? 
 2 ;9

! 11  

1
"

1  

#
1

,
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Computational results of bounds

� Single realization of random microstructure for differentRVE-sizes: Stiff (hard)
particles (p) in a compliant (soft) matrix material:Ep = 15E ref , � p = 0 :3 and
Em = E ref , � m = 0 :49. Volume fractionnp = 0 :40.

L 2
L ref

= 1 :25 L 2
L ref

= 2 :50 L 2
L ref

= 5 :00
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Computational results of bounds, cont'd

� Convergence of mean value of strain energy� 2 ( �H A ) with SVE-size. Uniaxial
strain: �H A = e1 
 e1

1.25 2.5 3.75 5 6.25 7.5 8.75 10

1.8

2

2.2

2.4

2.6

 

 

Dirichlet-Voigt
Periodic-Voigt
Periodic-Reuss
Neumann-Reuss

L 2
L ref

�
h

�  
2

(
� H

A
)i

E
re

f
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Computational results of bounds, cont'd

� Development of the number of realizationsN , required to estimate� 2 ( �H A )
within a given con�dence interval, with SVE-size

1.25 2.5 3.75 5 6.25 7.5 8.75 10
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Computational results of bounds, cont'd

� Convergence of mean value of strain energy� 2 ( �H B ) with SVE-size. Pure
shear: �H B = 1

2 [e1 
 e2 + e2 
 e1]. Since the results are scaled by the
modulus of elasticity for the matrix material,E ref , the ratio�

� � 2 ( �H B )
�

=Eref

may become smaller than unity
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Computational results of bounds, cont'd

� Development of the number of realizationsN , required to estimate� 2 ( �H B )
within a given con�dence interval, with SVE-size
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Computational homogenization – Introduction

� Aim: establish most general expression for�E2 for given prolongation
conditions

� Upscaling for linear problems: Need to establish
� the strain concentration tensorA(X ), X 2 
 2 , in H (X ) = A(X ) : �H in

terms of the macroscale and �uctuation �elds,
� the RVE-problem from whichA can be computed,
� �E2 using the �eldsE(X ) andA(X ).
� Note: For linear problemsA(X ) is independent of the actual�H

) �E2 can be established once and for all (for a given realization SVE).
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Effective stiffness for DBC

� SVE-problem (general): Findu 2 UD
2 which, for given value of�H , solves

hH : E : � H i 2 = 0 8� u 2 UD ;0
2

� Additive split

u (X ) = u M (X ) + u s(X ); u M (X ) = �H � [X � �X ]; X 2 
 2

; hH s : E : � H i 2 = �h H M : E : � H i 2 8� u 2 UD ;0
2
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Effective stiffness for DBC, cont'd

� Unit displacement �elds

u M (X ) = �H �[X � �X ] =
X

i;j

û M( ij ) (X ) �H ij ) û M( ij ) = ei 
 ej �[X � �X ]

; H M = u M 
 r = �H =
X

i;j

Ĥ
M( ij ) �H ij ) Ĥ

M( ij )
= ei 
 ej

� Ansatzfor �uctuation u s(X ) =
P

i;j û s(ij ) (X ) �H ij

; H (X ) = �H + H s(X ) = [ I+
X

i;j

Ĥ
s(ij )

(X )
 Ĥ
M( ij )

] : �H = A(X ) : �H

SVE-problem must hold for any choice of�H ; Problem for unit �elds: Find

û s(ij ) 2 UD ;0
2 for i; j = 1 ; 2; NDIM s. t.

hĤ
s(ij )

: E : � H i 2 = �h Ĥ
M( ij )

: E : � H i 2 = �h ei 
 ej : E : � H i 2 8� u 2 UD ;0
2
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Effective stiffness for DBC, cont'd

� Effective stiffness tensor

�P = hP i 2 = hE : H i 2 = hE : Ai 2| {z }
= �E2

: �H

�E2 = hE : Ai 2

= �E
V
2 +

X

i;j

hE : Ĥ
s(ij )

i 2 
 ei 
 ej =
X

i;j

hE : Ĥ
( ij )

i 2 
 ei 
 ej

� Remarks:
� Major symmetry of�E2 ensured by HM-condition

� Taylor assumption:̂H
s(ij )

= 0 (�uctuation omitted) ! No SVE-problem
to be solved

� Isotropic microconstituents does not ascertain isotropicmacroscopic
response for single (or even averaged) realizations
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