The Multiscale Mixed Finite-Element Method

Knut–Andreas Lie^{1,2,3}

¹SINTEF, Department of Applied Mathematics, Norway

²University of Bergen, Department of Mathematics

³Center of Mathematics for Applications, University of Oslo

eVITA Winter School, Dr. Holms, Geilo, Jan 23-28, 2011

Physical scales in porous media flow

... one cannot resolve them all at once

The scales that impact fluid flow in oil reservoirs range from

- the micrometer scale of pores and pore channels
- via dm-m scale of well bores and laminae sediments
- ▶ to sedimentary structures that stretch across entire reservoirs.

Physical scales in porous media flow

... and even measuring them is hard

Adapted from Pickup and Hern (2002) and Barkve (2004)

Geological models:

- here: geo-cellular models
- describe the reservoir geometry (horizons, faults, etc)
- typically generated using geostatistics
- give rock parameters (permeability and porosity)

Rock parameters:

- have a multiscale structure
- details on all scales impact flow
- permeability spans many orders of magnitude

Building a coarse-scale model

Upscaling: geological \longrightarrow simulation model

Gap in resolution:

- Geomodels: $10^7 10^9$ cells
- Simulators: $10^5 10^6$ cells
- \longrightarrow upscaling of parameters

Many alternatives:

- Harmonic, arithmetic, geometric, ...
- ▶ Local (K or T) methods
- Global methods
- Local-global methods
- Wavelet, multi-resolution, renormalization, ...
- Ensemble methods

Multiphase flow:

- Pseudo methods
- Steady-state methods

Incompressible two-phase flow

Fractional formulation (no gravity or capillary forces):

$$\begin{split} -\nabla \big(\mathsf{K}\lambda(S)\nabla p \big) &= q, \qquad v = -\mathsf{K}\lambda(S)\nabla p, \\ \phi \partial_t S + \nabla \cdot (vf(S)) &= 0 \end{split}$$

Numerical solution by operator splitting (each equation by a specialised numerical method):

pressure: multiscale or upscaling-downscaling method saturation: finite volumes or streamlines

Iterated implicit (+ domain decomposition) converges within a few iterations and is therefore an alternative to fully implicit

Purpose:

Derive effective petrophysical parameters that produces the same flow response on a coarser model.

Elliptic pressure equation

$$-\nabla\cdot\mathbf{K}\nabla p=f,\qquad\text{in }\Omega$$

For each coarse grid block B, we seek a tensor \mathbf{K}^* such that

$$\int_{B} \mathbf{K} \nabla p \, dx = \mathbf{K}^* \int_{B} \nabla p \, dx,$$

i.e., the net flow rate \bar{v} through B is related to the average pressure gradient $\overline{\nabla p}$ in B through Darcy's law $\bar{v} = -\mathbf{K}^* \overline{\nabla p}$.

One-dimensional pressure equation:

$$-(K(x)p'(x))' = 0, \qquad p(a) = p_0, \ p(b) = p_1$$

Integration gives that the velocity v = -K(x)p'(x) is constant. Hence

$$K^* \int_a^b p'(x) \, dx = \int_a^b K(x) p'(x) \, dx$$
$$K^* \int_a^b \frac{v}{K(x)} \, dx = \int_a^b v \, dx$$
$$\implies K^* = (b-a) \left[\int_a^b \frac{1}{K(x)} \, dx \right]^{-1}$$

In other words, K^* is identical to the harmonic average.

 $\mathbf{K}^* =$ harmonic average

Conclusion: correct upscaling depends on the flow

Harmonic-arithmetic averaging

To model flow in more than one direction, define a diagonal permeability tensor with the following diagonal components:

$$k_{xx} = \mathcal{A}_a^z \mathcal{A}_a^y \mathcal{A}_h^x \mathbf{K}, \quad k_{yy} = \mathcal{A}_a^z \mathcal{A}_a^x \mathcal{A}_h^y \mathbf{K}, \quad k_{zz} = \mathcal{A}_a^x \mathcal{A}_a^y \mathcal{A}_h^z \mathbf{K}.$$

Here, \mathcal{A}_a^{ξ} and \mathcal{A}_h^{ξ} represent the arithmetic and harmonic mean operators in the ξ -coordinate direction.

Harmonic-arithmetic averaging gives correct upscaling for perfectly stratified media with flow parallel to, or perpendicular to the layers

Upscaling Example

BC1: p = 1 at (x, y, 0), p = 0 at (x, y, 1), no-flow elsewhere.

BC2: p = 1 at (0, 0, z), p = 0 at (1, 1, z), no-flow elsewhere.

BC3: p = 1 at (0, 0, 0), p = 0 at (1, 1, 1), no-flow elsewhere.

	BC1	Model 1 BC2	BC3	BC1	Model 2 BC2	BC3
$Q_H/Q_R Q_A/Q_R$	1 4.33e+03	2.31e-04 1	5.52e-02 2.39e+02	1.10e-02 2.33e+04	3.82e-06 8.22	9.94e-04 2.13e+03
Q_{HA}/Q_R	1	1	1.14	8.14e-02	1.00	1.55e-01

For each grid block B, solve the homogeneous equation

$$-\nabla \cdot \mathbf{K} \nabla p = 0 \quad \text{in } B,$$

with three sets of boundary conditions, one for each coordinate direction. Compute an upscaled tensor ${\bf K}^*$ with components

$$k_{x\xi} = -Q_{\xi}L_{\xi}/\Delta P_x, \quad k_{y\xi} = -Q_{\xi}L_{\xi}/\Delta P_y, \quad k_{z\xi} = -Q_{\xi}L_{\xi}/\Delta P_z.$$

Here, Q_{ξ} , L_{ξ} and ΔP_{ξ} are the net flow, the length between opposite sides, and the pressure drop in the ξ -direction inside B.

Fundamental problem:

What kind of boundary conditions should be imposed?

Fixed boundary conditions — diagonal tensor

Periodic boundary conditions (in *x*-direction)

$$\begin{split} p(1,y) &= p(0,y) - \Delta p, \qquad p(x,1) = p(x,0), \\ v(1,y) &= v(0,y), \qquad v(x,1) = v(x,0) \end{split}$$

yeld a symmetric and positive-definite tensor \mathbf{K}^*

Flow-based upscaling Example

 ${\sf BC1:} \quad p=1 \ {\rm at} \ (x,y,0) {\rm ,} \ p=0 \ {\rm at} \ (x,y,1) {\rm , \ no-flow \ elsewhere.}$

BC2: p = 1 at (0, 0, z), p = 0 at (1, 1, z), no-flow elsewhere.

BC3: p = 1 at (0, 0, 0), p = 0 at (1, 1, 1), no-flow elsewhere.

	Model 1			Model 2		
	BC1	BC2	BC3	BC1	BC2	BC3
Q_{HA}/Q_R	1	1	1.143	0.081	1.003	0.155
Q_D/Q_R	1	1	1.143	1	1.375	1.893
Q_P/Q_R	1	1	1.143	0.986	1.321	1.867

Flow-based upscaling

More advanced techniques

 \blacktriangleright Transmissibility: use two blocks to derive effective T^{\ast}

$$v_{ij} = T_{ij}(p_i - p_j)$$

- ► Extended local: use larger domain to reduce influence of b.c.
- Global: use global flow solution to set b.c.
- Local-global: bootstrapping procedure

Flow-based upscaling

More advanced techniques

 \blacktriangleright Transmissibility: use two blocks to derive effective T^{\ast}

$$v_{ij} = T_{ij}(p_i - p_j)$$

- Extended local: use larger domain to reduce influence of b.c.
- Global: use global flow solution to set b.c.
- Local-global: bootstrapping procedure

However,

- upscaling is a bottleneck in workflow,
- gives loss of information/accuracy,
- ▶ is not sufficiently robust (dependent on flow regime),
- is not consistent with governing PDE(s),
- extensions to multiphase flow are somewhat shaky

Simulation on seismic/geologic grid Why do we want/need it?

Simulation on seismic/geologic grid:

- best possible resolution of the physical processes
- faster model building and history matching
- makes inversion a better instrument to find remaining oil
- better estimation of uncertainty by running alternative models

Example: Giant Middle-East field (10 million vs 1 billion cells)

From Dogru et al., SPE 119272

Simulation on seismic/geologic grid Why do we want/need it?

Simulation on seismic/geologic grid:

- best possible resolution of the physical processes
- faster model building and history matching
- makes inversion a better instrument to find remaining oil
- better estimation of uncertainty by running alternative models

Example: Giant Middle-East field (10 million vs 1 billion cells)

From Dogru et al., SPE 119272

Million-cell models on desktop computers

How to get there..?

Simplified flow physics

Can often tell a lot about the fluid movement. "Full physics" is typically only required towards the end of a workflow

Operator splitting

Fully coupled solution is slow.. Subequations often have different time scales. Splitting opens up for tailor-made methods

Million-cell models on desktop computers

How to get there ..?

Simplified flow physics

Can often tell a lot about the fluid movement. "Full physics" is typically only required towards the end of a workflow

Operator splitting

Fully coupled solution is slow.. Subequations often have different time scales. Splitting opens up for tailor-made methods

Million-cell models on desktop computers How to get there..?

Use of sparsity / (multiscale) structure

- effects resolved on different scales
- small changes from one step to next
- small changes from one simulation to next

Example: SPE10, Layer 36

Multiscale idea:

- Pressure on coarse grid
- Velocity on fine grid

Incorporate impact of subgrid heterogeneity in approximation spaces

Advantages: utilize more geological data, more accurate solutions, geometrical flexibility

Million-cell models on desktop computers

Prerequisites for real-field studies

More efficient than standard solvers:

- easy to parallelise,
- less memory requirements than fine-grid solvers.

Ability to handle industry-standard grids:

- (highly) skewed and degenerate grid cells,
- non-matching cells,
- unstructured connectivities.

Compatible with current solvers:

- can be built on top of commercial/inhouse solvers,
- must be able to use existing linear solvers.

Utilizing the same computations more efficiently

Standard upscaling:

Utilizing the same computations more efficiently

Standard upscaling:

Utilizing the same computations more efficiently

Utilizing the same computations more efficiently

Standard upscaling:

Coarse grid blocks:

Flow problems:

Utilizing the same computations more efficiently

Standard upscaling:

Coarse grid blocks:

↓ ↑

Flow problems:

Multiscale method:

Coarse grid blocks:

Flow problems:

Utilizing the same computations more efficiently

Standard upscaling:

Coarse grid blocks:

1

Flow problems:

Multiscale method:

Coarse grid blocks:

Flow problems:

For pressure equations without scale separation

Multiscale methods

Numerical methods that attempt to model physical phenomena on coarse grids while honoring small-scale features that impact the coarse grid solution in an appropriate way

The multiscale finite-element (MsFE) method In one spatial dimension

Model problem

Consider the Poisson-type problem

 $\partial_x(K(x)\partial_x p) = f, \qquad x \in \Omega = [0,1], \quad p(0) = p(1) = 0,$

where $f, k \in L^2(\Omega)$ and $0 < \alpha < K(x) < \beta$ for all $x \in \Omega$

Variational formulation

Find $p \in H^1_0(\Omega)$ such that

$$a(p,v) = (f,v)$$
 for all $v \in H_0^1(\Omega,$

where (\cdot, \cdot) is the L^2 inner-product and

$$a(p,v) = \int_{\Omega} K(x) \partial_x p \partial_x v \, dx$$

The MsFE method

Multiscale approximation spaces

Let $\mathcal{N}_B = \{0 = x_0 < x_1 < \cdots < x_n = 1\}$ be a set of nodal points and define $B = (x_{i-1}, x_i)$. For $i = 1, \ldots, n-1$, we define a basis function $\phi^i \in H^1_0(\Omega)$ by

$$a(\phi^i, v) = 0 \qquad \text{for all } v \in H^1_0(B_i \cup B_{i+1}), \qquad \phi^i(x_j) = \delta_{ij},$$

where δ_{ij} is the Kronecker delta.

Basis functions

Super-convergence property

The MsFE method

Find the unique function p_0 in

$$V^{\mathsf{ms}} = \operatorname{span}\{\phi^i\}$$
$$= \{u \in H^1_0(\Omega) : a(u, v) = 0 \text{ for all } v \in H^1_0(\cup_i B_i)\}$$

satisfying

$$a(p_0, v) = (f, v)$$
 for all $v \in V^{\mathsf{ms}}$

Theorem

Assume that p solves the variational formulation. Then $p=p_0+\sum_{i=1}^n p_i,$ where $p_i\in H^1_0(B_i)$ is defined by

$$a(p_i, v) = (f, v)$$
 for all $v \in H_0^1(B_i)$

Assume that p solves the variational formulation and that $v \in V^{ms}$. Then

$$a(p - p_0, v) = a(p, v) - a(p_0, v)$$

 $(f, v) - (f, v) = 0$

Hence, p_0 is the orthogonal projection of p onto $V^{\rm ms}$

Since $H_0^1(\Omega) = V^{\mathsf{ms}} \otimes H_0^1(\cup_i B_i)$ it follows that

$$p_0(x_i) = p(x_i)$$
 for all i

In other words, p_0 is the interpolant of p in $V^{\rm ms}$

Proof: uniqueness

Let p_I be the interpolant of p in V^{ms} . Then $p - p_I \in H_0^1(\cup_i B_i)$ and it follows from the mutual orthogonality of V^{ms} and $H_0^1(\cup_i B_i)$ with respect to $a(\cdot, \cdot)$ that

$$a(p-p_I,v)=0$$
 for all $v\in V^{\mathsf{ms}}$

Hence, for all $v \in V^{ms}$

$$a(p_I, v) = a(p, v) = (f, v) = a(p_0, v) \implies a(p_I - p_0, v) = 0$$

Thus, in particular, by choosing $v = p_I - p_0$ we obtain

$$a(p_I - p_0, p_I - p_0) = 0,$$

which implies that $p_0 = p_I$

Super-convergence property

Solution of the variational problem is decomposed into the MsFE solution and solutions of independent local subgrid problems.

MsFEM in 1D = a Schur complement decomposition

Does the result extend to higher dimensions?

Super-convergence property

Solution of the variational problem is decomposed into the MsFE solution and solutions of independent local subgrid problems.

MsFEM in 1D = a Schur complement decomposition

Does the result extend to higher dimensions?

No, but the basic construction applies and helps us understand how subgrid features of the solution can be embodied into a coarse grid approximation space.
Basis functions in 2D

 $\label{eq:point} \begin{array}{l} \blacktriangleright \ p \in V^{\rm ms} \mbox{ implies that} \\ \nabla \cdot \mathbf{K} \nabla \phi^{ij} = 0 \mbox{ in all } \Omega_m \end{array}$

Basis functions in 2D

- $p \in V^{\rm ms}$ implies that $\nabla \cdot \mathbf{K} \nabla \phi^{ij} = 0$ in all Ω_m
- ▶ φ^{ij} = 0 on edges not emanating from x_{i,j}

Basis functions in 2D

- $p \in V^{\rm ms}$ implies that $\nabla \cdot \mathbf{K} \nabla \phi^{ij} = 0$ in all Ω_m
- ▶ φ^{ij} = 0 on edges not emanating from x_{i,j}

•
$$\phi^{ij}(x_{m,n}) = \delta_{i,m}\delta_{j,n}$$

b

Basis functions in 2D

- $p \in V^{\rm ms}$ implies that $\nabla \cdot \mathbf{K} \nabla \phi^{ij} = 0$ in all Ω_m
- ▶ φ^{ij} = 0 on edges not emanating from x_{i,j}
- $\blacktriangleright \phi^{ij}(x_{m,n}) = \delta_{i,m}\delta_{j,n}$
- Boundary conditions on edges emanating from x_{i,j}?

Unfortunately, the MsFE method is not locally mass-conservative in higher dimensions

The multiscale mixed finite-element (MsMFE) method Mixed formulation for incompressible flow

Find
$$(v, p) \in H_0^{1, \operatorname{div}} \times L^2$$
 such that

$$\begin{aligned} \int (\lambda K)^{-1} u \cdot v \, dx - \int p \nabla \cdot u \, dx &= 0, \qquad \forall u \in H_0^{1, \operatorname{div}}, \\ \int \ell \nabla \cdot v \, dx &= \int q \ell \, dx, \quad \forall \ell \in L^2. \end{aligned}$$

Standard MFE method

- Seek solution in $\mathbf{V}_h \times W_h \subset H_0^{1,\operatorname{div}} \times L^2$
- Approximation spaces: piecewise polynomials

The multiscale mixed finite-element (MsMFE) method Mixed formulation for incompressible flow

Find
$$(v, p) \in H_0^{1, \operatorname{div}} \times L^2$$
 such that

$$\int (\lambda K)^{-1} u \cdot v \, dx - \int p \nabla \cdot u \, dx = 0, \qquad \forall u \in H_0^{1, \operatorname{div}},$$

$$\int \ell \nabla \cdot v \, dx = \int q \ell \, dx, \quad \forall \ell \in L^2.$$

Multiscale MFE method

- Seek solution in $\mathbf{V}_{H,h} \times W_{H,h} \subset H_0^{1,\mathsf{div}} \times L^2$
- Approximation spaces: local numerical solutions

Grids and basis functions in general

Fine grid with petrophysical parameters cell

Grids and basis functions in general

Fine grid with petrophysical parameters cell

Construct a coarse grid, and choose the discretisation spaces V and U^{ms} such that:

Grids and basis functions in general

Fine grid with petrophysical parameters cell

Construct a coarse grid, and choose the discretisation spaces V and U^{ms} such that:

▶ For each coarse block T_i , there is a basis function $\phi_i \in V$.

Grids and basis functions in general

Fine grid with petrophysical parameters cell

Construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in V$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in U^{ms}$.

Decomposition:

Basis functions

- \blacktriangleright $p(x,y) = \sum_{i} p_i \phi_i(x,y)$
- ► $v(x,y) = \sum_{ij} v_{ij} \psi_{ij}(x,y)$ sum over all block faces
- sum over all coarse blocks

Local flow problems

Velocity basis function ψ_{ij} solves a local system of equations in Ω_{ij} :

$$\begin{split} \vec{\psi}_{ij} &= -\mu^{-1} \mathbf{K} \nabla \varphi_{ij} \\ \nabla \cdot \vec{\psi}_{ij} &= \begin{cases} w_i(\vec{x}), & \text{if } \vec{x} \in \Omega_i, \\ -w_j(\vec{x}), & \text{if } \vec{x} \in \Omega_j, \\ 0, & \text{otherwise.} \end{cases}$$

with no-flow conditions on $\partial \Omega_{ij}$

Source term: $w_i \propto \text{trace}(K_i)$ drives a unit flow through Γ_{ij} .

If there is a sink/source in T_i , then $w_i \propto q_i$.

The multiscale simulation loop

Geomodel with petrophysical parameters from fine scale

Evolve fine-scale saturations using the fine-scale fluxes

Linear system: mixed form

Mixed form:

Indefinite, saddle-point problem. Requires special numerical linear algebra

Linear system: mixed hybrid form

$$\begin{bmatrix} B & C & D \\ C^T & 0 & 0 \\ D^T & 0 & 0 \end{bmatrix} \begin{bmatrix} v \\ -p \\ \pi \end{bmatrix} = \begin{bmatrix} 0 \\ g \\ 0 \end{bmatrix}, \qquad \qquad \begin{array}{c} p_i \\ p_i \end{array} \xrightarrow{v_{ij}} p_j \end{array}$$

Here,

$$b_{ij} = \int_{\Omega} \psi_i (\lambda K)^{-1} \psi_j \, dx, \quad c_{ik} = \int_{\Omega} \phi_k \nabla \cdot \psi_i \, dx, \quad d_{ik} = \int_{\partial \Omega} |\psi_i \cdot n_k| \, dx$$

Linear system: mixed hybrid form

٦

Here,

$$b_{ij} = \int_{\Omega} \psi_i (\lambda K)^{-1} \psi_j \, dx, \quad c_{ik} = \int_{\Omega} \phi_k \nabla \cdot \psi_i \, dx, \quad d_{ik} = \int_{\partial \Omega} |\psi_i \cdot n_k| \, dx$$

Reduced to a positive-definite form based using a Schur-complement

$$(D^T B^{-1} D - F^T L^{-1} F)\pi = F^T L^{-1} g,$$

 $F = C^T B^{-1} D, \quad L = C^T B^{-1} C.$

Reconstruct cell pressures and fluxes by back-substition,

$$Lp = q + F^T \pi, \qquad Bv = Cp - D\pi.$$

Algebraic formulation

Split the basis functions, $oldsymbol{\psi}_{ij}=oldsymbol{\psi}_{ij}^H-oldsymbol{\psi}_{ji}^H$

$$\boldsymbol{\psi}_{ij}^{H}(E) = \begin{cases} \boldsymbol{\psi}_{ij}(E), & \text{if } E \in T_{ij} \setminus T_j \\ 0, & \text{otherwise} \end{cases} \qquad \boldsymbol{\psi}_{ji}^{H}(E) = \begin{cases} -\boldsymbol{\psi}_{ij}(E), & \text{if } E \in T_j \\ 0, & \text{otherwise} \end{cases}$$

Hybrid basis functions ψ^{H}_{ij} as columns in a matrix Ψ

Coarse-scale hybrid mixed system

$$egin{bmatrix} \Psi^{\mathsf{T}}B\Psi & \Psi^{\mathsf{T}}C\mathcal{I} & \Psi^{\mathsf{T}}D\mathcal{J} \ \mathcal{I}^{\mathsf{T}}C^{\mathsf{T}}\Psi & 0 & 0 \ \mathcal{J}^{\mathsf{T}}D^{\mathsf{T}}\Psi & 0 & 0 \ \end{bmatrix} egin{bmatrix} v^c \ -p^c \ \lambda^c \end{bmatrix} = egin{bmatrix} 0 \ g^c \ 0 \end{bmatrix}$$

 Ψ – matrix with basis functions \mathcal{I} – prolongation from blocks to cells \mathcal{J} – prolongation from block faces to cell faces

Reconstruction of fine-scale velocity $v^f = \Psi v^c$ (Pressure bases may also have fine-scale structure if necessary)

This sounds interesting — where do I get it?

The Matlab Reservoir Simulation Toolbox

MsMFE available as open-source code

MRST Version 2010a

- routines and data structures for reading, representing, processing and visualizing unstructured grids
- corner-point grids / Eclipse input
- standard flow and transport solvers for one and two phases
- multiscale flow solvers

Inhouse version:

- black-oil models
- adjoint methods, reordering, flow-based grids, etc.

http://www.sintef.no/MRST

Comparison of accuracy and efficiency

Upscaling methods

- Harmonic-arithmetic averaging
- Flow-based upscaling with unit pressure drop
- Adaptive local-global upscaling (Chen & Durlofsky)

Fine-grid solution: downscaling using nested gridding

Multiscale methods

- ► The multiscale finite-volume (MsFV) method
- Numerical subgrid-upscaling (NSU) method (Arbogast et al.)
- The mixed finite-element (MsMFE) method

From: V. Kippe, J. E. Aarnes, and K.-A. Lie. A comparison of multiscale methods for elliptic problems in porous media flow. Comput. Geosci., Special issue on multiscale methods. Vol. 12, No. 3, pp. 377-398, 2008. DOI: 10.1007/s10596-007-9074-6

Global upscaling + fine-grid reconstruction = a 'multiscale' method:

- Compute initial T^{*}_{lj}'s using standard upscaling
- ► Solve global coarse-scale pressure equation with T_{lj}^* 's
- ▶ Until convergence (in v and p)
 - Interpolate between pressures to get BC for local flow problems
 - Compute new T_{li}^* 's from local flow problems
 - ▶ Solve global coarse-scale pressure equation with new T_{lj}^* 's
- ► Solve coarse-scale problem (wells and BC) with upscaled T_{lj}^* 's
- Reconstruct fine-scale velocity field with nested gridding

Multiscale versus upscaling methods Adaptive local-global upscaling / nested gridding

Upscale transmissibility:

$$\begin{aligned} -\nabla\cdot K\nabla p &= 0 \quad \text{in} \quad \Omega_{lj} \\ p &= Ip^* \quad \text{in} \quad \partial\Omega_{lj} \end{aligned}$$

Solve coarse-scale problem:

$$\sum_{j} T_{lj}^*(p_l - p_j) = \int_{K_l} q \, dx \quad \forall K_l$$

Construct fine-scale velocity:

$$\begin{aligned} v &= -K \nabla p, \quad \nabla \cdot v = q \quad \text{ in } K_l \\ v \cdot n &= \frac{T_{ki} (v^* \cdot n_{lj})}{\sum_{\gamma_{ki} \subset \Gamma_{lj}} T_{ki}} \quad \text{ on } \partial K_l \end{aligned}$$

(Here i runs over the underlying fine grid)

Instead of generalizing standard MFEM basis functions, NSUM includes localized subgrid variations in the approximation spaces:

$$W_{H,h} = W_H \bigoplus_{T_i \in \mathcal{T}_H(\Omega)} W_h(T_i) = W_H \oplus W_h,$$
$$\mathbf{V}_{H,h} = \mathbf{V}_H \bigoplus_{T_i \in \mathcal{T}_H(\Omega)} \mathbf{V}_h(T_i) = \mathbf{V}_H \oplus \mathbf{V}_h.$$

- Both the coarse- and fine-scale spaces can be any standard MFEM spaces.
- The most common choices are BDM1 on the coarse scale and RT0 on the fine scale.
- ▶ Localization, $\mathbf{v_h} \cdot \mathbf{n} = 0$, $\forall \mathbf{v}_h \in \mathbf{V}_h(T_i)$, limits inter-element flow to be determined by the coarse-scale basis only.

Multiscale versus upscaling methods SPE 10, individual layers

Saturation errors at 0.3 PVI on 15×55 coarse grid

Average saturation errors on Tarbert formation (Layers 1-35)

Cartesian coarse grids:

Multiscale methods give enhanced accuracy only when subgrid information is exploited

Average saturation errors on Upper Næss formation (Layers 36-85)

Cartesian coarse grids:

Multiscale methods give enhanced accuracy only when subgrid information is exploited

Up-gridded $30 \times 30 \times 333$ corner-point grid with layered log-normal permeability

Complex coarse grid-block geometries:

MsMFEM is more accurate than upscaling, also for coarse-grid simulation.

Velocity errors for Layer 85

Synthetic test suite: permeability generated by sgsim from GSLIB

100 realisations of three different scenarios

Summary of observations:

- All methods give good results on log-normal permeability
- Long correlation lengths:
 - MsFVM sometimes gives very inaccurate velocity fields
 - NSUM has limited ability to model variations across coarse-mesh interfaces
 - MsMFEM has reduced accuracy for strong diagonal channels
- MsMFEM most accurate in terms of saturation errors
- ALGUNG is very robust, but uses global information

Deficiencies of the methods

An idealized, but illustrative special case

- MsMFEM looses accuracy for cases with strong diagonal channels hitting corners of coarse grid blocks
- Flow 45° to grid faces must take a detour into neighbouring coarse element
- ▶ If the channel crosses element faces (dual-grid corners), the problem disappears for MsMFEM but appears for MsFVM ...

Deficiencies of the methods

Scenario 1 with $\Delta x = 100 \Delta y$

- ▶ MsFVM is highly inaccurate on fine scale, but acceptable on coarse scale
- ► Fine-grid fluxes large relative to coarse-grid fluxes → oscillatory boundary conditions that introduce circular currents
- Problems reduced by using nested gridding to reconstruct fine-scale velocity

Computational complexity: order-of-magnitude argument

Assume:

- Grid model with $N = N_s * N_c$ cells:
 - N_c number of coarse cells
 - N_s number of fine cells in each coarse cell
- Linear solver of complexity $\mathcal{O}(m^{\alpha})$ for $m\times m$ system
- Negligible work for determining local b.c., numerical quadrature, and assembly (can be important, especially for NSUM)

Direct solution

 N^{α} operations for a two-point finite volume method

MsMFEM

Example: $128 \times 128 \times 128$ fine grid

Comparison with algebraic multigrid, $\alpha = 1.2$

Example: $128 \times 128 \times 128$ fine grid

Comparison with less efficient solver, $\alpha = 1.5$

Direct solution may be more efficient, so why bother with multiscale?

- ► Full simulation: *O*(10²) time steps.
- Basis functions need not be recomputed

Also:

- Possible to solve very large problems
- Easy parallelization

Water cuts obtained by never updating basis functions:

Improved accuracy by adaptive updating of basis functions:

Improved accuracy by using global information (initial fine-scale solution):

Implementation details for MsMFE

There are certain choices....

- Fine-grid discretization
- Generation of coarse grids
- Domain of support and boundary conditions
- Choice of weighting function in definition of basis functions
- Linear algebra

Complex reservoir geometries

Challenges:

- Industry-standard grids are often nonconforming and contain skewed and degenerate cells
- There is a trend towards unstructured grids
- Standard discretization methods produce wrong results on skewed and rough cells
- The combination of high aspect and anisotropy ratios can give very large condition numbers

PEBI:

Discretization on real geometries

Corner-point grids:

- areal 2D mesh of vertical or inclined pillars
- each volumetric cell is restriced by four pillars
- each cell is defined by eight corner points, two on each pillar

Cell geometries are challenging from a discretization point-of-view

Skewed and deformed blocks:

Many faces:

Difficult geometries:

Non-matching cells:

Small interfaces:

(Very) high aspect ratios:

 $800\times800\times0.25~{\rm m}$

The mimetic finite difference method

Mimetic finite-difference methods may be interpreted as a finite-volume counterpart of mixed finite-element methods.

Key features:

- ► Applicable for models with general polyhedral grid-cells.
- Allow easy treatment of non-conforming grids with complex grid-cell geometries (including curved faces).
- Generic implementation: same code applies to all grids (e.g., corner-point/PEBI, matching/non-matching, ...).

The mimetic finite difference method, Brezzi et al., 2005

Express fluxes $\boldsymbol{v} = (v_1, v_2, \dots, v_n)^T$ as: $\boldsymbol{v} = -\boldsymbol{T}(\boldsymbol{p} - p_0),$ where $\boldsymbol{p} = (p_1, p_2, \dots, p_n)^T.$

The mimetic finite difference method, Brezzi et al., 2005

Express fluxes
$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)^{\mathsf{T}}$$
 as:

$$\boldsymbol{v} = -\boldsymbol{T}(\boldsymbol{p} - p_0),$$

where $\boldsymbol{p} = (p_1, p_2, \dots, p_n)^{\mathsf{T}}$. Impose exactness for any *linear* pressure field $p = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{a} + c$ (which gives velocity equal to $-\mathbf{K}\boldsymbol{a}$):

$$v_i = -A_i \boldsymbol{n}_i^{\mathsf{T}} \mathbf{K} \boldsymbol{a}$$

 $p_i - p_0 = (\boldsymbol{x}_i - \boldsymbol{x}_0)^{\mathsf{T}} \boldsymbol{a}.$

The mimetic finite difference method, Brezzi et al., 2005

Express fluxes
$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)^{\mathsf{T}}$$
 as:

$$\boldsymbol{v} = -\boldsymbol{T}(\boldsymbol{p} - p_0),$$

where $p = (p_1, p_2, \dots, p_n)^T$. Impose exactness for any *linear* pressure field $p = x^T a + c$ (which gives velocity equal to $-\mathbf{K}a$):

$$v_i = -A_i \boldsymbol{n}_i^{~i} \mathbf{K} \boldsymbol{a}$$

 $p_i - p_0 = (\boldsymbol{x}_i - \boldsymbol{x}_0)^{\mathsf{T}} \boldsymbol{a}.$

As a result, ${\bf T}$ must satisfy

$$\mathbf{T} \times \mathbf{C} = \mathbf{N} \times \mathbf{K}$$

where $C(i,:) = (x_i - x_0)^{\mathsf{T}}$ and $N(i,:) = A_i n_i^{\mathsf{T}}$

The mimetic finite difference method, Brezzi et al., 2005

Express fluxes
$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)^{\mathsf{T}}$$
 as:

$$\boldsymbol{v} = -\boldsymbol{T}(\boldsymbol{p} - p_0),$$

where $\mathbf{p} = (p_1, p_2, \dots, p_n)^{\mathsf{T}}$. Impose exactness for any *linear* pressure field $p = \mathbf{x}^{\mathsf{T}}\mathbf{a} + c$ (which gives velocity equal to $-\mathsf{K}\mathbf{a}$): $v_1 = -A_1\mathbf{a}^{\mathsf{T}}\mathsf{K}\mathbf{a}$

$$v_i \equiv -A_i \boldsymbol{n}_i \, \mathbf{k} \boldsymbol{a}$$

 $p_i - p_0 = (\boldsymbol{x}_i - \boldsymbol{x}_0)^\mathsf{T} \boldsymbol{a}.$

As a result, ${\bf T}$ must satisfy

$$\boxed{\mathbf{T}} \times \mathbf{C} = \mathbf{N} \times \mathbf{K}$$

where $C(i,:) = (x_i - x_0)^{\mathsf{T}}$ and $N(i,:) = A_i n_i^{\mathsf{T}}$

Family of valid solutions:

$$\boldsymbol{T} = \frac{1}{|E|} \boldsymbol{N} \boldsymbol{K} \boldsymbol{N}^{\mathsf{T}} + \boldsymbol{T}_2,$$

where T_2 is such that T is s.p.d. and $T_2C = O$.

The mimetic finite difference method, Brezzi et al., 2005

Express fluxes
$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)^{\mathsf{T}}$$
 as:

$$\boldsymbol{v} = -\boldsymbol{T}(\boldsymbol{p} - p_0),$$

where $\boldsymbol{p} = (p_1, p_2, \dots, p_n)^{\mathsf{T}}$. Impose exactness for any *linear* pressure field $p = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{a} + c$ (which gives velocity equal to $-\mathsf{K}\boldsymbol{a}$):

$$v_i = -A_i \boldsymbol{n}_i^{\mathsf{T}} \mathbf{K} \boldsymbol{a}$$
$$p_i - p_0 = (\boldsymbol{x}_i - \boldsymbol{x}_0)^{\mathsf{T}} \boldsymbol{a}.$$

As a result, ${\bf T}$ must satisfy

$$\boxed{\mathbf{T}} \times \mathbf{C} = \mathbf{N} \times \mathbf{K}$$

where $\bm{C}(i,:)=(\bm{x}_i-\bm{x}_0)^{\mathsf{T}}$ and $\bm{N}(i,:)=A_i \bm{n}_i^{\mathsf{T}}$

Family of valid solutions:

$$\boldsymbol{T} = \frac{1}{|E|} \boldsymbol{N} \boldsymbol{K} \boldsymbol{N}^{\mathsf{T}} + \boldsymbol{T}_2,$$

where T_2 is such that T is s.p.d. and $T_2C = O$.

Imposing continuity across edges/faces and conservation yields a *hybrid* system:

$$\begin{pmatrix} \boldsymbol{B} & \boldsymbol{C} & \boldsymbol{D} \\ \boldsymbol{C}^{\mathsf{T}} & \boldsymbol{O} & \boldsymbol{O} \\ \boldsymbol{D}^{\mathsf{T}} & \boldsymbol{O} & \boldsymbol{O} \end{pmatrix} \begin{pmatrix} \boldsymbol{v} \\ \boldsymbol{p} \\ \boldsymbol{\pi} \end{pmatrix} = \mathrm{RHS}$$

\Downarrow

Reduces to s.p.d. system for face pressures π .

Mimetic: method applicable to general polyhedral cells

Workflow with automated upgridding in 3D

1) Coarsen grid by uniform partitioning in index space for corner-point grids

3) Compute basis functions

4) Block in coarse grid: component for building global solution

Simple idea: follow geological structures!

A depositional bed

Eroded layers gives a large number of degenerate and inactive cells. Relative error in saturation at $0.5 {\rm PVI}$:

Coarse grid	Isotropic	Anisotropic	Heterogeneous
Physical	0.1339	0.2743	0.2000
Logical	0.0604	0.1381	0.1415
Constrained	0.0573	0.1479	0.0993

Simple guidelines for choosing good coarse grids

- Minimize bidirectional flow over interfaces:
 - Avoid unnecessary irregularity (Γ_{6,7} and Γ_{3,8})
 - ▶ Avoid single neighbors (*T*₄)
 - ► Ensure that there are faces transverse to flow direction (T₅)
- Blocks and faces should follow geological layers (T₃ and T₈)
- Blocks should adapt to flow obstacles whenever possible
- For efficiency: minimize the number of connections
- S Avoid having too many small blocks

Problems with flow barriers

Problems occur when a basis function tries to force flow through a flow barrier

Can be detected automatically through the indicator

$$v_{ij} = \psi_{ij} \cdot (\lambda K)^{-1} \psi_{ij}$$

If $v_{ij}(x)>C$ for some $x\in T_i,$ then split T_i and generate basis functions for the new faces

Example: adaption to flow obstacles

Problems with crossflow

Problems if there is a strong bi-directional flow over a coarse-grid interface

fine grid

multiscale

Can be detected automatically through the indicator

$$|\int_{\Gamma_{ij}} v \cdot n \, ds| \ll \int_{\Gamma_{ij}} |v \cdot n| \, ds, \qquad c \leq \int_{\Gamma_{ij}} |v \cdot n| \, ds$$

If so, split ${\cal T}_i$ and generate basis functions for the new faces.

Problems with crossflow

Problems if there is a strong bi-directional flow over a coarse-grid interface

fine grid

multiscale

Can be detected automatically through the indicator

$$|\int_{\Gamma_{ij}} v \cdot n \, ds| \ll \int_{\Gamma_{ij}} |v \cdot n| \, ds, \qquad c \leq \int_{\Gamma_{ij}} |v \cdot n| \, ds$$

If so, split ${\cal T}_i$ and generate basis functions for the new faces.

Domain of support and boundary conditions

Overlap may often increase accuracy

Domain of support and boundary conditions

Overlap may often increase accuracy

Key observation:

If $v \in V^{ms}$, then the MsMFE solution $v_{h,H}$ replicates v regardless of heterogeneity (barriers, channels, etc) and grid.

The pressure $p_{H}\xspace$ is an exact $w\xspace$ average in each grid block

$$p_H|_{B_i} = \int_{B_i} pw_i \, dx$$

Question:

Is it possible to define basis functions so that $v \in V^{ms}$?

Yes, $v \in V^{ms}$ if

$$\psi_{ij} \cdot n_{ij} = \frac{v \cdot n_{ij}}{\int_{\Gamma_{ij}} v \cdot n_{ij} \, ds}$$

Domain of support and boundary conditions Invoking global information

Assume that we have computed v, e.g., on a fine grid using either true or generic boundary conditions (and wells)

Global basis functions:

$$\nabla \cdot \vec{\psi}_{ij} = \begin{cases} w_i(\vec{x}), & \text{if } \vec{x} \in B_i, \\ -w_j(\vec{x}), & \text{if } \vec{x} \in B_j \end{cases}$$
$$\vec{\psi}_{ij} \cdot \vec{n} = 0, \text{ on } \partial(B_i \cap B_j) \qquad \vec{\psi}_{ij} \cdot \vec{n}_{ij} = \frac{v \cdot n_{ij}}{\int_{\Gamma_{ij}} v \cdot n_{ij} \, ds} \text{ on } \Gamma_{ij}$$

Rationale

Pressure needs to be solved repeatedly in multiphase flow. Hence, can afford fine-scale solution.

Also: bootstrapping local-global MsMFE, use of more than one basis function per interface, etc

The weight function distributes $\nabla \cdot v$ on the coarse blocks:

$$egin{aligned} |\nabla \cdot v)|_{\Omega_i} &= \sum_j v_{ij} (\nabla \cdot \psi_{ij})|_{\Omega_i} = w_i \sum_j v_{ij} \ &= w_i \int_{\partial \Omega_i} v \cdot n \, ds = w_i \int_{\Omega_i} \nabla \cdot v \, dx \end{aligned}$$

Different roles:

Incompressible flow: Compressible flow:

$$\nabla \cdot v = q$$

$$\nabla \cdot v = q - c_t \partial_t p - \sum_j c_j v_j \cdot \nabla p$$

The role of the weight function

Choice of weight function: uniform

Uniform source:

$$w_i(x) = \frac{1}{|T_i|}$$

low (k_l) and high (k_h) permeability

streamlines from basis function

The role of the weight function

Choice of weight function: scaled

Scaled source:

$$w_i(x) = \frac{\operatorname{trace}(K(x))}{\int_{T_i} \operatorname{trace}(K(\xi)) \, d\xi}$$

Relative error in energy-norm

The role of the weight function Choice of weight function, $w_i = \theta(x) / \int_{\Omega_i} \theta(x) dx$

Incompressible flow:

$$\begin{split} &\int_{\Omega_i} q dx = 0, \qquad \theta(x) = \operatorname{trace}(\mathbf{K}(x)) \\ &\int_{\Omega_i} q dx \neq 0, \qquad \theta(x) = q(x) \end{split}$$

The role of the weight function Choice of weight function, $w_i = \theta(x) / \int_{\Omega_i} \theta(x) dx$

Incompressible flow:

$$\begin{split} &\int_{\Omega_i} q dx = 0, \qquad \theta(x) = \operatorname{trace}(\mathbf{K}(x)) \\ &\int_{\Omega_i} q dx \neq 0, \qquad \theta(x) = q(x) \end{split}$$

Compressible flow:

- ▶ $\theta \propto q$: compressibility effects concentrated where $q \neq 0$
- $\blacktriangleright~\theta \propto {\bf K}:~ \nabla \cdot v~{\rm over/underestimated}$ for high/low ${\bf K}$

Another choice motivated by physics:

$$\theta(x) = \phi(x),$$
 Motivation: $c_t \frac{\partial p}{\partial t} \propto \phi$

Usage and outlook

Multiscale methods need efficient transport solvers

Streamline methods

- intuitive visualization + new data
- subscale resolution
- good scaling, known to be efficient

Connections across faults:

Usage and outlook

Multiscale methods need efficient transport solvers

Streamline methods

- intuitive visualization + new data
- subscale resolution
- good scaling, known to be efficient

Time-of-flight (timelines):

Flooded volumes (stationary tracer):

Usage and outlook

Multiscale methods need efficient transport solvers

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over (non)linear iterations

Topological sorting

Multiscale methods need efficient transport solvers

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient

Optimal ordering

- same assumptions as for streamlines
- utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
- local control over (non)linear iterations

Local iterations:

Johansen formation: 27437 active cells

Global vs local Newton-Raphson solver

Δt	global		local	
days	time	iter	time (sec)	iter
125	2.26	12.69	0.044	0.93
250	2.35	12.62	0.047	1.10
500	2.38	13.25	0.042	1.41
1000	2.50	13.50	0.042	1.99

Multiscale methods need efficient transport solvers

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over (non)linear iterations
- Flow-based coarsening
 - ▶ agglomeration of cells → simple and flexible coarsening
 - hybrid griding schemes
 - heterogeneous multiscale method?
 - efficient model reduction

Cartesian grid:

Triangular grids:

Multiscale methods need efficient transport solvers

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over (non)linear iterations

Flow-based coarsening

- ► agglomeration of cells → simple and flexible coarsening
- hybrid griding schemes
- heterogeneous multiscale method?
- efficient model reduction

Different partitioning:

Uniform coarsening + Cartesian/NUC refinement

Multiscale methods need efficient transport solvers

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over (non)linear iterations

Flow-based coarsening

- ▶ agglomeration of cells → simple and flexible coarsening
- hybrid griding schemes
- heterogeneous multiscale method?
- efficient model reduction

- As robust upscaling methods?
- As alternative to upscaling and fine-scale solution?
- To provide flow simulation earlier in the modelling loop?
- ► To get 90% of the answer in 10% of the time?
- Fit-for-purpose solvers in workflows for ranking, history matching, planning, optimization, ...

More flexible wrt grids than standard upscaling methods: automatic coarsening

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency

Operations vs. upscaling factor:

SPE10: 1.1 mill cells

Inhouse code from 2005: Multiscale: 2 min and 20 sec Multigrid: 8 min and 36 sec

Usage and outlook Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing

Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing
- ► Fine-scale velocity → different grid for flow and transport → dynamical adaptivity

Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing
- ► Fine-scale velocity → different grid for flow and transport → dynamical adaptivity

Flow-based gridding:

with and without dynamic Cartesian refinement

Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing
- ► Fine-scale velocity —→ different grid for flow and transport →→ dynamical adaptivity
- Method for model reduction:
 - ► adjoint simulations → approximate gradients
 - ensemble simulations with representative basis functions

Water-flood optimization:

Reservoir geometry from a Norwegian Sea field

Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing
- ► Fine-scale velocity → different grid for flow and transport → dynamical adaptivity
- Method for model reduction:
 - ▶ adjoint simulations → approximate gradients
 - ensemble simulations with representative basis functions

History matching 1 million cells:

7 years: 32 injectors, 69 producers

Generalized travel-time inversion + multiscale: 7 forward simulations, 6 inversions

	CPU-time (wall clock)			
Solver	Total	Pres.	Transp.	
Multigrid	39 min	30 min	5 min	
Multiscale	17 min	7 min	6 min	

Success stories and unreaped potential

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing
- ► Fine-scale velocity → different grid for flow and transport → dynamical adaptivity
- Method for model reduction:
 - ► adjoint simulations → approximate gradients
 - ensemble simulations with representative basis functions
- Multiphysics applications

Stokes-Brinkmann:

Capabilities:

- ✓ Two-phase flow
- $\checkmark\,$ Cartesian / unstructured grids
- $\checkmark~$ Realistic flow physics \Rightarrow iterations
 - Correction functions + smoothing
 - Residual formulation + domain decomposition
- $\checkmark \ \ \mathsf{Pointwise} \ \mathsf{accuracy} \Rightarrow \mathsf{iterations}$

Capabilities:

- ✓ Two-phase flow
- ✓ Cartesian / unstructured grids
- ✓ Realistic flow physics ⇒ iterations
 - Correction functions + smoothing
 - Residual formulation + domain decomposition
- ✓ Pointwise accuracy ⇒ iterations

Not yet there:

- ► Compressible three-phase black-oil + non-Cartesian grids
- Fully implicit formulation
- Parallelization
- Compositional, thermal, ...

Other issues:

- How to choose good coarse grids for unstructured grids?
- Need for global information or iterative procedures?
- A posteriori error analysis (resolution or fine-scale junk)?
- More than two levels in hierarchical grid?
- How to include models from finer scales?