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Physical scales in porous media flow
... one cannot resolve them all at once

The scales that impact fluid flow in oil reservoirs range from

I the micrometer scale of pores and pore channels

I via dm–m scale of well bores and laminae sediments

I to sedimentary structures that stretch across entire reservoirs.
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Physical scales in porous media flow
... and even measuring them is hard
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Geological models
Articulation of the geologists’ perception of the reservoir

Geological models:

I here: geo-cellular models

I describe the reservoir geometry
(horizons, faults, etc)

I typically generated using
geostatistics

I give rock parameters (permeability
and porosity)

Rock parameters:

I have a multiscale structure

I details on all scales impact flow

I permeability spans many orders of
magnitude

Ex: Brent sequence

Tarbert Upper Ness
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Building a coarse-scale model
Upscaling: geological −→ simulation model

Gap in resolution:

I Geomodels: 107 − 109 cells

I Simulators: 105 − 106 cells

−→ upscaling of parameters

Many alternatives:

I Harmonic, arithmetic,
geometric, . . .

I Local (K or T ) methods

I Global methods

I Local-global methods

I Wavelet, multi-resolution,
renormalization, . . .

I Ensemble methods

Multiphase flow:

I Pseudo methods

I Steady-state methods
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Mathematical Model
Incompressible two-phase flow

Fractional formulation (no gravity or capillary forces):

−∇
(
Kλ(S)∇p) = q, v = −Kλ(S)∇p,

φ∂tS +∇ · (vf(S)) = 0

Numerical solution by operator splitting (each equation by a
specialised numerical method):

pressure: multiscale or upscaling-downscaling method

saturation: finite volumes or streamlines

Iterated implicit (+ domain decomposition) converges within a few iterations and is

therefore an alternative to fully implicit
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Upscaling
Single-phase upscaling

Purpose:

Derive effective petrophysical parameters that produces the same
flow response on a coarser model.

Elliptic pressure equation

−∇ ·K∇p = f, in Ω

For each coarse grid block B, we seek a tensor K∗ such that∫
B

K∇p dx = K∗
∫
B
∇p dx,

i.e., the net flow rate v̄ through B is related to the average
pressure gradient ∇p in B through Darcy’s law v̄ = −K∗∇p.
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Upscaling
Motivation: the one-dimensional case

One-dimensional pressure equation:

−
(
K(x)p′(x)

)′ = 0, p(a) = p0, p(b) = p1

Integration gives that the velocity v = −K(x)p′(x) is constant.
Hence

K∗
∫ b

a
p′(x) dx =

∫ b

a
K(x)p′(x) dx

K∗
∫ b

a

v

K(x)
dx =

∫ b

a
v dx

=⇒ K∗ = (b− a)
[∫ b

a

1
K(x)

dx
]−1

In other words, K∗ is identical to the harmonic average.
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Upscaling
Two multi-dimensional cases

Flow from left to right Flow from top to bottom

K∗ = arithmetic average K∗ = harmonic average

Conclusion: correct upscaling depends on the flow

9 / 76



Upscaling
Harmonic-arithmetic averaging

Harmonic-arithmetic averaging

To model flow in more than one direction, define a diagonal
permeability tensor with the following diagonal components:

kxx = AzaAyaAxhK, kyy = AzaAxaA
y
hK, kzz = AxaAyaAzhK.

Here, Aξa and Aξh represent the arithmetic and harmonic mean
operators in the ξ-coordinate direction.

Harmonic-arithmetic averaging gives correct upscaling for perfectly
stratified media with flow parallel to, or perpendicular to the layers
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Upscaling
Example

1

2

3

4

5

BC1: p = 1 at (x, y, 0), p = 0 at (x, y, 1), no-flow elsewhere.

BC2: p = 1 at (0, 0, z), p = 0 at (1, 1, z), no-flow elsewhere.

BC3: p = 1 at (0, 0, 0), p = 0 at (1, 1, 1), no-flow elsewhere.

Model 1 Model 2
BC1 BC2 BC3 BC1 BC2 BC3

QH/QR 1 2.31e−04 5.52e−02 1.10e−02 3.82e−06 9.94e−04
QA/QR 4.33e+03 1 2.39e+02 2.33e+04 8.22 2.13e+03
QHA/QR 1 1 1.14 8.14e−02 1.00 1.55e−01
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Flow-based upscaling
Fundamental setup

For each grid block B, solve the homogeneous equation

−∇ ·K∇p = 0 in B,

with three sets of boundary conditions, one for each coordinate direction.
Compute an upscaled tensor K∗ with components

kxξ = −QξLξ/∆Px, kyξ = −QξLξ/∆Py, kzξ = −QξLξ/∆Pz.

Here, Qξ, Lξ and ∆Pξ are the net flow, the length between opposite
sides, and the pressure drop in the ξ-direction inside B.

Fundamental problem:

What kind of boundary conditions should be imposed?
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Upscaling
Fixed and periodic boundary conditions

Fixed boundary conditions −→ diagonal tensor

i

p=1

V

p=0v.n=0

v.n=0

v.n=0 v.n=0

p=0

p=1

Vi

Periodic boundary conditions (in x-direction)

p(1, y) = p(0, y)−∆p, p(x, 1) = p(x, 0),
v(1, y) = v(0, y), v(x, 1) = v(x, 0)

yeld a symmetric and positive-definite tensor K∗
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Flow-based upscaling
Example

1

2

3

4

5

BC1: p = 1 at (x, y, 0), p = 0 at (x, y, 1), no-flow elsewhere.

BC2: p = 1 at (0, 0, z), p = 0 at (1, 1, z), no-flow elsewhere.

BC3: p = 1 at (0, 0, 0), p = 0 at (1, 1, 1), no-flow elsewhere.

Model 1 Model 2
BC1 BC2 BC3 BC1 BC2 BC3

QHA/QR 1 1 1.143 0.081 1.003 0.155
QD/QR 1 1 1.143 1 1.375 1.893
QP /QR 1 1 1.143 0.986 1.321 1.867
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Flow-based upscaling
More advanced techniques

I Transmissibility: use two blocks to derive effective T ∗

vij = Tij(pi − pj)

I Extended local: use larger domain to reduce influence of b.c.

I Global: use global flow solution to set b.c.

I Local-global: bootstrapping procedure

However,

I upscaling is a bottleneck in workflow,

I gives loss of information/accuracy,

I is not sufficiently robust (dependent on flow regime),

I is not consistent with governing PDE(s),

I extensions to multiphase flow are somewhat shaky
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Simulation on seismic/geologic grid
Why do we want/need it?

Simulation on seismic/geologic grid:

I best possible resolution of the physical processes

I faster model building and history matching

I makes inversion a better instrument to find remaining oil

I better estimation of uncertainty by running alternative models

Example: Giant Middle-East field (10 million vs 1 billion cells)

From Dogru et al., SPE 119272
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Million-cell models on desktop computers
How to get there..?

Simplified flow physics

Can often tell a lot about the fluid movement. “Full physics” is typically
only required towards the end of a workflow

Operator splitting

Fully coupled solution is slow.. Subequations often have different time
scales. Splitting opens up for tailor-made methods

Producer A

Producer B

Producer C

Producer D

Injector

Tarb
ert

Upper Ness

SINTEF inhouse code:

I 60× 220× 85 = 1.1 million cells, 25 time steps

I Intel 2.4 GHz with 2 GB RAM:

multigrid: 8 min 36 sec
multiscale: 2 min 22 sec

FrontSim:

I 360× 440× 85 = 13.5 million cells

I Intel Xeon 5482, 64 Gb, 3.2 GHz, single thread

I Computing time: 1 h 55 min

Use of sparsity / (multiscale) structure

I effects resolved on different scales

I small changes from one step to next

I small changes from one simulation to next

Example: SPE10, Layer 36

Multiscale idea:

I Pressure on coarse grid

I Velocity on fine grid

Incorporate impact of subgrid
heterogeneity in approximation spaces

Advantages: utilize more geological
data, more accurate solutions,
geometrical flexibility
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Million-cell models on desktop computers
Prerequisites for real-field studies

More efficient than standard solvers:

I easy to parallelise,

I less memory requirements than fine-grid solvers.

Ability to handle industry-standard grids:

I (highly) skewed and degenerate grid cells,

I non-matching cells,

I unstructured connectivities.

Compatible with current solvers:

I can be built on top of commercial/inhouse solvers,

I must be able to use existing linear solvers.
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From flow-based upscaling to multiscale methods
Utilizing the same computations more efficiently

Standard upscaling:

⇓

⇑

Coarse grid blocks:

⇓

⇑

Flow problems:

Multiscale method:

⇓

⇑

Coarse grid blocks:

⇓

⇑

Flow problems:
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Multiscale methods
For pressure equations without scale separation

Multiscale methods

Numerical methods that attempt to model physical phenomena on
coarse grids while honoring small-scale features that impact the
coarse grid solution in an appropriate way
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The multiscale finite-element (MsFE) method
In one spatial dimension

Model problem

Consider the Poisson-type problem

∂x(K(x)∂xp) = f, x ∈ Ω = [0, 1], p(0) = p(1) = 0,

where f, k ∈ L2(Ω) and 0 < α < K(x) < β for all x ∈ Ω

Variational formulation

Find p ∈ H1
0 (Ω) such that

a(p, v) = (f, v) for all v ∈ H1
0 (Ω,

where (·, ·) is the L2 inner-product and

a(p, v) =
∫

Ω

K(x)∂xp∂xv dx
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The MsFE method
Multiscale approximation spaces

Let NB = {0 = x0 < x1 < · · · < xn = 1} be a set of nodal points and
define B = (xi−1, xi). For i = 1, . . . , n− 1, we define a basis function
φi ∈ H1

0 (Ω) by

a(φi, v) = 0 for all v ∈ H1
0 (Bi ∪Bi+1), φi(xj) = δij ,

where δij is the Kronecker delta.

Basis functions

22 / 76



The MsFE method
Super-convergence property

The MsFE method

Find the unique function p0 in

V ms = span{φi}
= {u ∈ H1

0 (Ω) : a(u, v) = 0 for all v ∈ H1
0 (∪iBi)}

satisfying
a(p0, v) = (f, v) for all v ∈ V ms

Theorem

Assume that p solves the variational formulation. Then
p = p0 +

∑n
i=1 pi, where pi ∈ H1

0 (Bi) is defined by

a(pi, v) = (f, v) for all v ∈ H1
0 (Bi)
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The MsFE method
Proof: Galerkin projection property

Assume that p solves the variational formulation and that v ∈ V ms. Then

a(p− p0, v) = a(p, v)− a(p0, v)
(f, v)− (f, v) = 0

Hence, p0 is the orthogonal projection of p onto V ms

Since H1
0 (Ω) = V ms ⊗H1

0 (∪iBi) it follows that

p0(xi) = p(xi) for all i

In other words, p0 is the interpolant of p in V ms
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The MsFE method
Proof: uniqueness

Let pI be the interpolant of p in V ms. Then p− pI ∈ H1
0 (∪iBi) and it

follows from the mutual orthogonality of V ms and H1
0 (∪iBi) with respect

to a(·, ·) that
a(p− pI , v) = 0 for all v ∈ V ms

Hence, for all v ∈ V ms

a(pI , v) = a(p, v) = (f, v) = a(p0, v) =⇒ a(pI − p0, v) = 0

Thus, in particular, by choosing v = pI − p0 we obtain

a(pI − p0, pI − p0) = 0,

which implies that p0 = pI
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The MsFE method
Schur complement decomposition

Super-convergence property

Solution of the variational problem is decomposed into the MsFE
solution and solutions of independent local subgrid problems.

MsFEM in 1D = a Schur complement decomposition

Does the result extend to higher dimensions?

No, but the basic construction applies and helps us
understand how subgrid features of the solution can be
embodied into a coarse grid approximation space.
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The MsFE method
Basis functions in 2D

I p ∈ V ms implies that
∇ ·K∇φij = 0 in all Ωm

I φij = 0 on edges not
emanating from xi,j

I φij(xm,n) = δi,mδj,n

I Boundary conditions on
edges emanating from xi,j?

Unfortunately, the MsFE method is not locally mass-conservative
in higher dimensions
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The multiscale mixed finite-element (MsMFE) method
Mixed formulation for incompressible flow

Find (v, p) ∈ H1,div
0 × L2 such that∫

(λK)−1u · v dx−
∫
p∇ · u dx = 0, ∀u ∈ H1,div

0 ,∫
`∇ · v dx =

∫
q` dx, ∀` ∈ L2.

Standard MFE method

I Seek solution in Vh ×Wh ⊂ H1,div
0 × L2

I Approximation spaces: piecewise polynomials
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Multiscale MFE method

I Seek solution in VH,h ×WH,h ⊂ H1,div
0 × L2

I Approximation spaces: local numerical solutions
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The MsMFE method
Grids and basis functions in general

Fine grid with petrophysical parameters cell

Construct a coarse grid, and choose the discretisation spaces V and Ums

such that:

I For each coarse block Ti, there is a basis function φi ∈ V .

I For each coarse edge Γij , there is a basis function ψij ∈ Ums.
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The MsMFE method
Grids and basis functions in general
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The MsMFE method
Basis functions

Decomposition:

I p(x, y) =
∑
i piφi(x, y) – sum over all coarse blocks

I v(x, y) =
∑
ij vijψij(x, y) – sum over all block faces

Basis φi for pressure:

φi =

{
1 in Ti,

0 otherwise.

Basis ψij for velocity:

homogeneous (RT0) heterogeneous
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The MsMFE method
Local flow problems

Velocity basis function ψij solves a local
system of equations in Ωij :

~ψij = −µ−1K∇ϕij

∇ · ~ψij =


wi(~x), if ~x ∈ Ωi,
−wj(~x), if ~x ∈ Ωj ,

0, otherwise.

with no-flow conditions on ∂Ωij

Source term: wi ∝ trace (Ki) drives a unit
flow through Γij .

If there is a sink/source in Ti, then wi ∝ qi.

Ωi Ωj

Ωij

Homogeneous medium Heterogeneous medium
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The MsMFE method
The multiscale simulation loop

Compute coarse-scale velocity

↑

Geomodel with petrophysical parame-
ters from fine scale

→

Reconstruct fine-scale velocity

↓

Evolve fine-scale saturations using the
fine-scale fluxes
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The MsMFE method
Linear system: mixed form

Mixed form:

[
B C
CT 0

] [
v
p

]
=
[
0
g

]
,

bij =
∫

Ω

ψi
(
λK
)−1

ψj dx,

cik =
∫

Ω

φk∇ · ψi dx

Indefinite, saddle-point problem. Requires special numerical linear algebra
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The MsMFE method
Linear system: mixed hybrid form

 B C D
CT 0 0
DT 0 0

 v
−p
π

 =

0
g
0

 , vij

λij

pi pj

Here,

bij =

Z
Ω

ψi
`
λK
´−1

ψj dx, cik =

Z
Ω

φk∇ · ψi dx, dik =

Z
∂Ω

|ψi · nk| dx

Reduced to a positive-definite form based using a Schur-complement(
DTB−1D − FTL−1F

)
π = FTL−1g,

F = CTB−1D, L = CTB−1C.

Reconstruct cell pressures and fluxes by back-substition,

Lp = q + FTπ, Bv = Cp−Dπ.
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The MsMFE method
Algebraic formulation

Split the basis functions, ψij = ψHij −ψ
H
ji

ψHij (E) =

(
ψij(E), if E ∈ Tij \ Tj
0, otherwise

ψHji(E) =

(
−ψij(E), if E ∈ Tj
0, otherwise

Hybrid basis functions ψHij as columns in a matrix Ψ

Coarse-scale hybrid mixed system264 ΨTBΨ ΨTCI ΨTDJ
ITCTΨ 0 0

J TDTΨ 0 0

375
24 vc

−pc

λc

35 =

24 0

gc

0

35
Ψ – matrix with basis functions
I – prolongation from blocks to cells
J – prolongation from block faces to cell faces

Reconstruction of fine-scale velocity vf = Ψvc

(Pressure bases may also have fine-scale
structure if necessary)

0 20 40 60 80 100 120 140

0

20
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80

100

120

140

nz = 588
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The MsMFE method
This sounds interesting — where do I get it?
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The Matlab Reservoir Simulation Toolbox
MsMFE available as open-source code

MRST Version 2010a

I routines and data structures for
reading, representing, processing and
visualizing unstructured grids

I corner-point grids / Eclipse input

I standard flow and transport solvers for
one and two phases

I multiscale flow solvers

Inhouse version:

I black-oil models

I adjoint methods, reordering,
flow-based grids, etc.

http://www.sintef.no/MRST
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Multiscale versus upscaling methods
Comparison of accuracy and efficiency

Upscaling methods

I Harmonic-arithmetic averaging

I Flow-based upscaling with unit pressure drop

I Adaptive local-global upscaling (Chen & Durlofsky)

Fine-grid solution: downscaling using nested gridding

Multiscale methods

I The multiscale finite-volume (MsFV) method

I Numerical subgrid-upscaling (NSU) method (Arbogast et al.)

I The mixed finite-element (MsMFE) method

From: V. Kippe, J. E. Aarnes, and K.-A. Lie. A comparison of multiscale methods for elliptic problems in porous
media flow. Comput. Geosci., Special issue on multiscale methods. Vol. 12, No. 3, pp. 377-398, 2008. DOI:
10.1007/s10596-007-9074-6
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Multiscale versus upscaling methods
Adaptive local-global upscaling / nested gridding

Global upscaling + fine-grid reconstruction = a ‘multiscale’ method:

I Compute initial T ∗lj ’s using standard upscaling

I Solve global coarse-scale pressure equation with T ∗lj ’s

I Until convergence (in v and p)

I Interpolate between pressures to get BC for local flow problems
I Compute new T ∗lj ’s from local flow problems
I Solve global coarse-scale pressure equation with new T ∗lj ’s

I Solve coarse-scale problem (wells and BC) with upscaled T ∗lj ’s

I Reconstruct fine-scale velocity field with nested gridding
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Multiscale versus upscaling methods
Adaptive local-global upscaling / nested gridding

Upscale transmissibility:

−∇ ·K∇p = 0 in Ωlj
p = Ip∗ in ∂Ωlj

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

K Kl j

T ∗lj =

∫
∂Kl∩∂Kj

v · nlj ds∫
Kl
p dx−

∫
Kj
p dx

Solve coarse-scale problem:

∑
j

T ∗lj(pl − pj) =
∫
Kl

q dx ∀Kl

Construct fine-scale velocity:

v = −K∇p, ∇ · v = q in Kl

v · n =
Tki(v∗ · nlj)∑
γki⊂Γlj

Tki
on ∂Kl

(Here i runs over the underlying fine grid)
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Multiscale versus upscaling methods
The Numerical Subgrid Upscaling Method (Arbogast et al.)

Instead of generalizing standard MFEM basis functions, NSUM includes
localized subgrid variations in the approximation spaces:

WH,h = WH

⊕
Ti∈TH(Ω)

Wh(Ti) = WH ⊕Wh,

VH,h = VH

⊕
Ti∈TH(Ω)

Vh(Ti) = VH ⊕Vh.

I Both the coarse- and fine-scale spaces can be any standard MFEM
spaces.

I The most common choices are BDM1 on the coarse scale and RT0
on the fine scale.

I Localization, vh · n = 0, ∀vh ∈ Vh(Ti), limits inter-element flow to
be determined by the coarse-scale basis only.
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Multiscale versus upscaling methods
SPE 10, individual layers

Saturation errors at 0.3 PVI on 15× 55 coarse grid
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Multiscale versus upscaling methods
Average saturation errors on Tarbert formation (Layers 1–35)

Cartesian coarse grids:
Multiscale methods give enhanced accuracy only
when subgrid information is exploited
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Multiscale versus upscaling methods
Average saturation errors on Upper Næss formation (Layers 36–85)

Cartesian coarse grids:
Multiscale methods give enhanced accuracy only
when subgrid information is exploited
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Multiscale versus upscaling methods
Up-gridded 30× 30× 333 corner-point grid with layered log-normal permeability

Complex coarse grid-block geometries:

MsMFEM is more accurate than upscaling, also for
coarse-grid simulation.
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Multiscale versus upscaling methods
Velocity errors for Layer 85

MsMFEM: MsFVM:
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Multiscale versus upscaling methods
Synthetic test suite: permeability generated by sgsim from GSLIB

100 realisations of three different scenarios
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Summary of observations:

I All methods give good results on log-normal permeability

I Long correlation lengths:

I MsFVM sometimes gives very inaccurate velocity fields
I NSUM has limited ability to model variations across

coarse-mesh interfaces
I MsMFEM has reduced accuracy for strong diagonal channels

I MsMFEM most accurate in terms of saturation errors

I ALGUNG is very robust, but uses global information
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Multiscale versus upscaling methods
Deficiencies of the methods

An idealized, but illustrative special case

I MsMFEM looses accuracy for cases with strong diagonal channels hitting
corners of coarse grid blocks

I Flow 45◦ to grid faces must take a detour into neighbouring coarse
element

I If the channel crosses element faces (dual-grid corners), the problem
disappears for MsMFEM but appears for MsFVM . . .

0 10 20 30 40 50 60
0

10

20

30

40

50

60

 

 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60
0

10

20

30

40

50

60

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60
0

10

20

30

40

50

60

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Permeability Reference MsMFEM

46 / 76



Multiscale versus upscaling methods
Deficiencies of the methods

Scenario 1 with ∆x = 100∆y

I MsFVM is highly inaccurate on fine scale, but acceptable on coarse scale

I Fine-grid fluxes large relative to coarse-grid fluxes −→ oscillatory
boundary conditions that introduce circular currents

I Problems reduced by using nested gridding to reconstruct fine-scale
velocity
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Multiscale versus upscaling methods
Computational complexity: order-of-magnitude argument

Assume:

I Grid model with N = Ns ∗Nc cells:

I Nc number of coarse cells
I Ns number of fine cells in each coarse cell

I Linear solver of complexity O(mα) for m×m system

I Negligible work for determining local b.c., numerical quadrature,
and assembly (can be important, especially for NSUM)

Direct solution

Nα operations for a two-point finite volume method

MsMFEM

Computing basis functions: D ·Nc · (2Ns)α operations
Solving coarse-scale system: (D ·Nc)α operations
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Multiscale versus upscaling methods
Example: 128× 128× 128 fine grid
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Multiscale versus upscaling methods
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Multiphase Flow
Time-dependent problems

Direct solution may be more efficient, so why bother with multiscale?

I Full simulation: O(102) time
steps.

I Basis functions need not be
recomputed

Also:

I Possible to solve very large
problems

I Easy parallelization
8x8x8   16x16x16 32x32x32 64x64x64
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7

Basis functions
Global system

Fine scale solution (AMG) O(n     )1.2
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Multiphase Flow
Example: quarter five-spot, Layer 85 from SPE 10, coarse grid: 10× 22

Water cuts obtained by never updating basis functions:
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Multiphase Flow
Example: quarter five-spot, Layer 85 from SPE 10, coarse grid: 10× 22

Improved accuracy by adaptive updating of basis functions:
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Two-Phase Flow
Example: five-spot, Layer 68 from SPE 10, coarse grid: 15× 55

Improved accuracy by using global information (initial fine-scale
solution):
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Implementation details for MsMFE
There are certain choices....

I Fine-grid discretization

I Generation of coarse grids

I Domain of support and boundary conditions

I Choice of weighting function in definition of basis functions

I Linear algebra
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Discretization of the fine-grid problem
Complex reservoir geometries

Challenges:

I Industry-standard grids are often nonconforming and contain
skewed and degenerate cells

I There is a trend towards unstructured grids

I Standard discretization methods produce wrong results on
skewed and rough cells

I The combination of high aspect and anisotropy ratios can give
very large condition numbers

Corner point: Tetrahedral: PEBI:
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Discretization of the fine-grid problem
Discretization on real geometries

Corner-point grids:

I areal 2D mesh of vertical or
inclined pillars

I each volumetric cell is restriced by
four pillars

I each cell is defined by eight corner
points, two on each pillar
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Discretization of the fine-grid problem
Cell geometries are challenging from a discretization point-of-view

Skewed and deformed blocks:

Many faces:

Difficult geometries:

Non-matching cells:

Small interfaces:

(Very) high aspect ratios:

800× 800× 0.25 m
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Discretization of the fine-grid problem
The mimetic finite difference method

Mimetic finite-difference methods may be interpreted as a
finite-volume counterpart of mixed finite-element methods.

Key features:

I Applicable for models with general polyhedral grid-cells.

I Allow easy treatment of non-conforming grids with complex
grid-cell geometries (including curved faces).

I Generic implementation: same code applies to all grids (e.g.,
corner-point/PEBI, matching/non-matching, ...).
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Discretization of the fine-grid problem
The mimetic finite difference method, Brezzi et al., 2005

Express fluxes v = (v1, v2, . . . , vn)T as:

v = −T (p− p0),

where p = (p1, p2, . . . , pn)T.

Impose exactness for any linear pressure
field p = xTa+ c (which gives velocity
equal to −Ka):

vi = −AinT
i Ka

pi − p0 = (xi − x0)Ta.

As a result, T must satisfy

where C(i, :) = (xi − x0)T and
N(i, :) = Ain

T
i
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Discretization of the fine-grid problem
The mimetic finite difference method, Brezzi et al., 2005
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v = −T (p− p0),

where p = (p1, p2, . . . , pn)T.
Impose exactness for any linear pressure
field p = xTa+ c (which gives velocity
equal to −Ka):

vi = −AinT
i Ka

pi − p0 = (xi − x0)Ta.

As a result, T must satisfy

where C(i, :) = (xi − x0)T and
N(i, :) = Ain

T
i

Family of valid solutions:

T =
1
|E|
NKNT + T 2,

where T 2 is such that T is s.p.d.
and T 2C = O.

Imposing continuity across
edges/faces and conservation
yields a hybrid system:0@ B C D

CT O O

DT O O

1A 0@vp
π

1A = RHS

⇓

Reduces to s.p.d. system for face
pressures π.
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Discretization of the fine-grid problem
Mimetic: method applicable to general polyhedral cells

Single phase, homogeneous K, linear pressure drop

Grid TPFA MFDM
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Generation of coarse grids
Automated generation of coarse grids

(Unique) grid flexibility:

Given a method that can solve local flow problems on the subgrid,
the MsMFE method can be formulated on any coarse grid in which
the coarse blocks consist of a connected collection of fine-grid cells
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Generation of coarse grids
Workflow with automated upgridding in 3D

1) Coarsen grid by uniform partitioning in
index space for corner-point grids

44 927 cells
↓
148 blocks

9 different coarse blocks

3) Compute basis functions

∇·ψij =

(
wi(x),

−wj(x),

for all pairs of blocks

2) Detect all adjacent blocks

4) Block in coarse grid: component for
building global solution

60 / 76



Generation of coarse grids
Simple idea: follow geological structures!

A depositional bed

Eroded layers gives a large number of degenerate and inactive cells.
Relative error in saturation at 0.5PVI:

Coarse grid Isotropic Anisotropic Heterogeneous
Physical 0.1339 0.2743 0.2000
Logical 0.0604 0.1381 0.1415

Constrained 0.0573 0.1479 0.0993

physical logical constrained
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Generation of coarse grids
Simple guidelines for choosing good coarse grids

1 Minimize bidirectional flow over
interfaces:

I Avoid unnecessary irregularity
(Γ6,7 and Γ3,8)

I Avoid single neighbors (T4)
I Ensure that there are faces

transverse to flow direction (T5)

2 Blocks and faces should follow
geological layers (T3 and T8)

3 Blocks should adapt to flow obstacles
whenever possible

4 For efficiency: minimize the number of
connections

5 Avoid having too many small blocks
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6 7 8

Flow direction  Flow direction  Flow direction  Flow direction  Flow direction  Flow direction  

1 3
2

5

6 7 8

Flow direction  Flow direction  
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Generation of coarse grids
Problems with flow barriers

Problems occur when a basis function tries to force flow through a flow
barrier

problem no problem

Can be detected automatically through the indicator

vij = ψij · (λK)−1ψij

If vij(x) > C for some x ∈ Ti, then split Ti and generate basis functions

for the new faces
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Generation of coarse grids
Example: adaption to flow obstacles
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Generation of coarse grids
Problems with crossflow

Problems if there is a strong bi-directional flow over a coarse-grid
interface

fine grid multiscale

Can be detected automatically through the indicator

|
∫

Γij

v · nds| �
∫

Γij

|v · n| ds, c ≤
∫

Γij

|v · n| ds

If so, split Ti and generate basis functions for the new faces.
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Domain of support and boundary conditions
Overlap may often increase accuracy

Ωi Ωj

Ωij
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Domain of support and boundary conditions
Global boundary conditions

Key observation:

If v ∈ V ms, then the MsMFE solution vh,H replicates v regardless of
heterogeneity (barriers, channels, etc) and grid.

The pressure pH is an exact w-weighted average in each grid block

pH |Bi =
∫
Bi

pwi dx

Question:

Is it possible to define basis functions so that v ∈ V ms?

Yes, v ∈ V ms if

ψij · nij =
v · nij∫

Γij
v · nij ds
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Domain of support and boundary conditions
Invoking global information

Assume that we have computed v, e.g., on a fine grid using either true or
generic boundary conditions (and wells)

Global basis functions:

∇ · ~ψij =

{
wi(~x), if ~x ∈ Bi,
−wj(~x), if ~x ∈ Bj

~ψij · ~n = 0, on ∂(Bi ∩Bj) ~ψij · ~nij =
v · nij∫

Γij
v · nij ds

on Γij

Rationale

Pressure needs to be solved repeatedly in multiphase flow. Hence, can
afford fine-scale solution.

Also: bootstrapping local-global MsMFE, use of more than one basis
function per interface, etc
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The role of the weight function
Interpretation of the weight function

The weight function distributes ∇ · v on the coarse blocks:

(∇ · v)|Ωi =
∑
j

vij(∇ · ψij)|Ωi = wi
∑
j

vij

= wi

∫
∂Ωi

v · nds = wi

∫
Ωi

∇ · v dx

Different roles:

Incompressible flow: ∇ · v = q
Compressible flow: ∇ · v = q − ct∂tp−

∑
j cjvj · ∇p
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The role of the weight function
Choice of weight function: uniform

Uniform source:

wi(x) =
1
|Ti|

vh

vl

lk

kh

Gijp=1 p=0jTiT

Ω Ω

Ω Ω

1 2

3 4

low (kl) and high (kh) permeability streamlines from basis function
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The role of the weight function
Choice of weight function: scaled

Scaled source:

wi(x) =
trace(K(x))∫

Ti
trace(K(ξ)) dξ
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The role of the weight function
Choice of weight function, wi = θ(x)/

R
Ωi
θ(x) dx

Incompressible flow:∫
Ωi

qdx = 0, θ(x) = trace(K(x))∫
Ωi

qdx 6= 0, θ(x) = q(x)

Compressible flow:

I θ ∝ q: compressibility effects concentrated where q 6= 0
I θ ∝ K: ∇ · v over/underestimated for high/low K

Another choice motivated by physics:

θ(x) = φ(x), Motivation: ct
∂p

∂t
∝ φ
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Usage and outlook
Multiscale methods need efficient transport solvers

I Streamline methods
I intuitive visualization + new data
I subscale resolution
I good scaling, known to be efficient

I Optimal ordering
I same assumptions as for streamlines
I utilize causality −→ O(n) algorithm,

cell-by-cell solution
I local control over (non)linear iterations

I Flow-based coarsening
I agglomeration of cells −→ simple and

flexible coarsening
I hybrid griding schemes
I heterogeneous multiscale method?
I efficient model reduction

Flow pattern (CO2 injection):

Connections across faults:
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Time-of-flight (timelines):

Flooded volumes (stationary tracer):
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Usage and outlook
Multiscale methods need efficient transport solvers

I Streamline methods
I intuitive visualization + new data
I subscale resolution
I good scaling, known to be efficient

I Optimal ordering
I same assumptions as for streamlines
I utilize causality −→ O(n) algorithm,

cell-by-cell solution
I local control over (non)linear iterations

I Flow-based coarsening
I agglomeration of cells −→ simple and

flexible coarsening
I hybrid griding schemes
I heterogeneous multiscale method?
I efficient model reduction

Local iterations:

Johansen formation: 27 437 active cells

Global vs local Newton–Raphson solver

∆t global local

days time iter time (sec) iter

125 2.26 12.69 0.044 0.93

250 2.35 12.62 0.047 1.10

500 2.38 13.25 0.042 1.41

1000 2.50 13.50 0.042 1.99
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Cartesian grid:

Triangular grids:

73 / 76



Usage and outlook
Multiscale methods need efficient transport solvers

I Streamline methods
I intuitive visualization + new data
I subscale resolution
I good scaling, known to be efficient

I Optimal ordering
I same assumptions as for streamlines
I utilize causality −→ O(n) algorithm,

cell-by-cell solution
I local control over (non)linear iterations

I Flow-based coarsening
I agglomeration of cells −→ simple and

flexible coarsening
I hybrid griding schemes
I heterogeneous multiscale method?
I efficient model reduction

Different partitioning:

Uniform coarsening + NUC refinement

Uniform coarsening + Cartesian/NUC refinement
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Usage and outlook
For what purpose are multiscale methods useful?

I As robust upscaling methods?

I As alternative to upscaling and fine-scale solution?

I To provide flow simulation earlier in the modelling loop?

I To get 90% of the answer in 10% of the time?

I Fit-for-purpose solvers in workflows for ranking, history matching,
planning, optimization, . . .
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Usage and outlook
Success stories and unreaped potential

I More flexible wrt grids than standard
upscaling methods: automatic coarsening

I Reuse of computations, key to computational
efficiency

I Natural (elliptic) parallelism:
I giga-cell simulations
I multicore and heterogeneous

computing

I Fine-scale velocity −→ different grid for flow
and transport −→ dynamical adaptivity

I Method for model reduction:
I adjoint simulations −→ approximate

gradients
I ensemble simulations with

representative basis functions

I Multiphysics applications
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Inhouse code from 2005:

Multiscale: 2 min and 20 sec
Multigrid: 8 min and 36 sec
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Flow-based gridding:

with and without dynamic Cartesian refinement
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Water-flood optimization:

Reservoir geometry from a Norwegian Sea field
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Forward simulations:
44 927 cells, 20 time steps, < 5 sec in Matlab
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Usage and outlook
Success stories and unreaped potential

I More flexible wrt grids than standard
upscaling methods: automatic coarsening

I Reuse of computations, key to computational
efficiency

I Natural (elliptic) parallelism:
I giga-cell simulations
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computing

I Fine-scale velocity −→ different grid for flow
and transport −→ dynamical adaptivity

I Method for model reduction:
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gradients
I ensemble simulations with

representative basis functions
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History matching 1 million cells:

7 years: 32 injectors, 69 producers

Generalized travel-time inversion + multiscale:
7 forward simulations, 6 inversions

CPU-time (wall clock)
Solver Total Pres. Transp.
Multigrid 39 min 30 min 5 min
Multiscale 17 min 7 min 6 min
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Stokes–Brinkmann:
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Usage and outlook
What are the limitations?

Capabilities:

X Two-phase flow

X Cartesian / unstructured grids

X Realistic flow physics ⇒ iterations
I Correction functions + smoothing
I Residual formulation + domain decomposition

X Pointwise accuracy ⇒ iterations

Not yet there:

I Compressible three-phase black-oil + non-Cartesian grids

I Fully implicit formulation

I Parallelization

I Compositional, thermal, . . .
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Usage and outlook
What are the limitations?

Other issues:

I How to choose good coarse grids for unstructured grids?

I Need for global information or iterative procedures?

I A posteriori error analysis (resolution or fine-scale junk)?

I More than two levels in hierarchical grid?

I How to include models from finer scales?
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