

Approximate Mortar Conditions for the CR Finite Element on Non-matching Grids

Talal Rahman, BCCS

Joint work with Xuejun Xu, LSEC

Talal Rahman

DD16, New York, Jan.15, 2005

The Crouzeix-Raviart Mortar FE

We consider the problem: Find $u^* \in H^1_0(\Omega)$ such that

$$a(u^*,v)=f(v),\quad \forall v\in H^1_0(\Omega),$$

where $\overline{\Omega} = \bigcup_i \overline{\Omega_i}$ (Non-overlapping), $a(u, v) = \sum_{i=1}^N \int_{\Omega_i} \nabla u \cdot \nabla v \, dx$ and $f(v) = \sum_{i=1}^N \int_{\Omega_i} fv \, dx$.

 $X_h(\Omega_i)$: The CR (P1 Non-conforming) FE space on Ω_i , vanishing at the edge-mid nodes on the boundary $\partial \Omega$.

Talal Rahman

Mortar condition: For $u_i \in X_h(\Omega_i)$ and $u_j \in X_h(\Omega_j)$,

$$Q_m u_i = Q_m u_j$$
 on δ_m .

 $Q_m : L^2(\Gamma_{ij}) \to M(\delta_m)$ is the L^2 projection operator. $M(\delta_m)$ is the set of piecewise constant functions on the δ_m -discretization.

CR mortar FE space: [cf. Marcinkowski]

 $V_h = \{ u \in \prod_i X_h(\Omega_i) : u \text{ satisfies the Mortar condition on } \delta_m \}$

Talal Rahman

DD16, New York, Jan.15, 2005

Approximate Mortar Condition

Basis functions of V_h , associated with the subdomain interior, may have non-zero support on the non-mortar side (Not desirable, specially in 3D).

Aim is to avoid their direct use in applying the mortar condition. Alternative: Approximate mortar condition $(I_m : X_h(\gamma_m) \to L^2(\gamma_m))$:

$$Q_m I_m u_i = Q_m u_j \quad \text{ on } \delta_m$$

Approximate mortar condition in Wavelet context, cf. [Bertoluzza]

Talal Rahman

Choice of I_m

First choice

Being inspired by the fact that the basis functions associated with the subdomain interior, have zero integrals on the subdomain boundary, an easy choice would be to define I_m as

$$I_m u_{i|_e} = \frac{1}{|e|} \int_e u_i \, dx \quad \text{ on } e \subset \gamma_m$$

The operator I_m preserves only constants, and is therefore not enough for getting optimal error estimate. We need locally at least P1-preserving.

Talal Rahman

The interpolation is done basically by first joining values at the neighboring edge-mid nodes by straight lines, and then simply extending the two end straight lines towards the end of the mortar γ_m .

Talal Rahman

The discrete problem

Since V_h does not belong to $H_0^1(\Omega)$, we use the broken bilinear form $a_h(\cdot, \cdot)$ defined as $a_h(u, v) = \sum_{i=1}^N \sum_{\tau \in \mathcal{T}_h(\Omega_i)} \int_{\tau} \nabla u \cdot \nabla v \, dx$. The discrete problem takes the following form: Find $u_h^* \in V_h$ such that

$$a_h(u_h^*, v_h) = f(v_h), \quad \forall v_h \in V_h.$$

 V_h is a Hilbert space with an inner product defined by $a_h(u_h, v_h)$. An error estimate for the new mortar technique for CR FE (optimal):

$$|u^* - u^*_h|^2_{H^1_h(\Omega)} \le c \sum_{i=1}^N h^2_i |u^*|^2_{H^2(\Omega_i)}$$

Talal Rahman

An additive Schwarz method

The splitting

$$V_h = \sum_{\gamma_m} V_\gamma + V_0 + \sum_i^N V_i$$

 V_i and V_{γ} are the standard local subspaces of V_h on subdomain Ω_i and mortar edge γ_m . $V_0 \subset V_h = span\{\Phi_i\}_{i=1,\dots,N}$ is a coarse space similar to the one in [Dryja-Bjørstad-Rahman].

The function Φ_i is defined by its values at the CR nodes:

$$\Phi_i(x) = \begin{cases} 1, & x \in \Omega_i^{CR}, \\ \frac{\rho_i}{(\rho_i + \rho_j)}, & x \in \gamma_m^{CR}, \gamma_m \subset \partial \Omega_i \cap \partial \Omega_j, \\ 0, & \text{elsewhere.} \end{cases}$$

Values on the non-mortar sides are defined using the mortar condition.

Talal Rahman

DD16, New York, Jan.15, 2005

Projection-like

For
$$u \in V_h$$
, and $\alpha \in \{\{\gamma_m\}, 0, 1, \cdots, N\}, \quad T_\alpha : V_h \to V_\alpha$
$$a_h(T_\alpha u, v) = a_h(u, v), \quad v \in V_\alpha$$

An equivalent discrete problem

Set
$$T = \sum_{\gamma_m} T_{\gamma_m} + T_0 + \sum_{i=1}^N T_i.$$

$$a_h(Tu, v) = a_h(u, v), \quad v \in V_\alpha$$

Convergence

$$\kappa_2(T) \le c \frac{H}{h}$$

Talal Rahman

DD16, New York, Jan.15, 2005

Numerical Results

Unit square domain Ω , initially divided into 9 square subdomains, each consisting of $2m_i^2$ triangles corresponding to the mesh size $h_i \approx 1/m_i$. For each neighboring subdomain pair $\{\Omega_i, \Omega_j\}, m_i \neq m_j$ in order to get non-matching grids. The function f is so chosen that the exact solution is equal to $sin(\pi x)sin(\pi y)$.

$\{h_i, h_j\}$	Standard Mortar		Approximate Mortar	
	$L^2 - error$	$H^1 - error$	$L^2 - error$	H1 - error
$\{1/6, 1/5\}$	0.00202040	0.065292	0.00248430	0.078409
$\{1/12, 1/10\}$	0.00049658	0.032843	0.00066682	0.038768
$\{1/24, 1/20\}$	0.00012307	0.016479	0.00017493	0.019321

 L^2 -norm and H^1 -seminorm of the error of the two mortar methods, showing that the two methods are quite close.

Talal Rahman

DD16, New York, Jan.15, 2005

$\{h_i,h_j\}$	Standard Mortar	Approximate Mortar
$\{1/6, 1/5\}$	28.85 (25)	30.11 (23)
$\{1/12, 1/10\}$	63.44 (35)	60.90 (31)
$\{1/24, 1/20\}$	134.18 (49)	122.55 (45)

Condition number estimates (PCG-iteration counts in parentheses), showing similar performance for the two mortar methods.

Talal Rahman

DD16, New York, Jan.15, 2005