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Overview

1 Higher Order Methods

Nonlinear systems of equations and the Halley Class.
Newton v.s. Halley.
Unconstrained Optimization
The effect of Sparsity

2 Computing a sparse Jacobian

Direct Determination
Symmetry

Sir Isaac Newton (1643 - 1727). Sir Edmond Halley (1656 - 1742)
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Halley and the Comet NOT Bill Haley and his Comets

Dead End
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Newton’s Method

Given a nonlinear function F : R
n → R

n: Solve F (x) = 0.

Given x0 ∈ R
n

while not converged do
Compute F ′(xk )
Solve F ′(xk )sk = −F (xk )
Update xk+1 = xk + sk

end-while

Element i , j of the Jacobian matrix F ′(x) at x

F ′
i,j = ∂

∂xj
Fi (x)

The column j of F ′ can be computed by AD (or approximated by a finite difference).

∂
∂xj

F (x) = F ′(x)ej ≈
1
ε
{F (x + εej )− F (x)}

Newton’s method has under suitable assumptions Q order 2 rate of convergence:

‖xk+1 − x∗‖ = O(‖xk − x∗‖
2)
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Why we NOT should look at Higher Order Methods (1)

From Numerical analysis by L. N. Trefethen in Princeton Companion to Mathematics,

Princeton U. Press. 2008.
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Why we NOT should look at Higher Order Methods(2)

(Ortega and Rheinboldt 1970): Methods which require second and higher order
derivatives, are rather cumbersome from a computational view point. Note that, while

computation of F ′ involves only n2 partial derivatives ∂jFi , computation of F
′′

requires
n3 second partial derivatives ∂j∂kFi , in general exorbiant amount of work indeed.

(Rheinboldt 1974): Clearly, comparisons of this type turn out to be even worse for
methods with derivatives of order larger than two. Except in the case n = 1, where all
derivatives require only one function evaluation, the practical value of methods
involving more than the first derivative of F is therefore very questionable.

(Rheinboldt 1998): Clearly, for increasing dimension n the required computational
work soon outweighs the advantage of the higher-order convergence.

Dead End ? ?
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Halley’s method
Sparsity

Nonlinear system of equations

Computing derivatives are not difficult or expensive.

Newton hitting ”Bull’s eye” is an interesting observation.

Sparsity in the second derivative is more dominant than in the Jacobian.

A constant factor independent of number of variables is very attractive.

Very high accuracy (200 digits) is possible.
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The Halley class of methods

Consider the nonlinear system of equations

F (x) = 0

where F : R
n → R

n is sufficiently smooth.
The Halley class: Given starting value x0 compute

xk+1 = xk −

{

I +
1

2
L(xk )[I − αL(xk )]−1

}

(F ′(xk ))−1F (xk ), k = 0, 1, . . . ,

where

L(x) = (F ′(x))−1F ′′(x)(F ′(x))−1F (x), x ∈ R
n.

1 Chebyshev’s method (α = 0).

2 Halley’s method (α = 1
2
).

3 Super Halley’s method (α = 1).

The Halley class for 0 ≤ α ≤ 1 was proposed by Gutiérrez and Hernandez (1997) in a

Banach space setting and for nonlinear system of equations by Schwetlick (1967)
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One step Halley

By rewriting the iteration we get the following two-step method
For k = 0, 1, . . .

Solve for s
(1)
k : F ′(xk )s

(1)
k = −F (xk )

Solve for s
(2)
k :

(

F ′(xk ) + αF ′′(xk )s
(1)
k

)

s
(2)
k = − 1

2
F ′′(xk )s

(1)
k s

(1)
k

Update the iterate: xk+1 = xk + s
(1)
k + s

(2)
k

Define the linear function Lk (s) = F (xk ) + F ′(xk )s. In Newton’s method we solve for
sk in

Lk (s) = 0, and update xk+1 = xk + sk

Define the quadratic function

Tk (s) = F (xk ) + F ′(xk )s +
1

2
F

′′

(xk )ss

Question:

Is Halley’s method related to solving Tk (sk ) = 0 and update xk+1 = xk + sk?
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One step Halley is two step Newton

For k = 0, 1, . . .

Solve for s
(1)
k : F ′(xk )s

(1)
k = −F (xk )

Solve for s
(2)
k : (F ′(xk ) + αF ′′(xk )s

(1)
k )s

(2)
k = − 1

2
F ′′(xk )s

(1)
k s

(1)
k

Update the iterate: xk+1 = xk + s
(1)
k + s

(2)
k

Note that Tk (0) = F (xk ) and T ′
k (0) = F ′(xk )

Tk (s
(1)
k ) = F (xk ) + F ′(xk )s

(1)
k +

1

2
F ′′(xk )s

(1)
k s

(1)
k =

1

2
F ′′(xk )s

(1)
k s

(1)
k .

For k = 0, 1, . . .

Solve for s
(1)
k : T ′

k (0)s
(1)
k = −Tk (0)

Solve for s
(2)
k : T ′

k (s
(1)
k )s

(2)
k = −Tk (s

(1)
k )

Update the iterate: xk+1 = xk + s
(1)
k + s

(2)
k

Key observation

One step super Halley (α = 1) is two steps of Newton’s on a quadratic function Tk .
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Local Convergence

For k = 0, 1, . . .

Solve for s
(1)
k : F ′(xk )s

(1)
k = −F (xk )

Solve for s
(2)
k : [F ′(xk ) + αF ′′(xk )s

(1)
k ]s

(2)
k = − 1

2
F ′′(xk )s

(1)
k s

(1)
k

Update the iterate: xk+1 = xk + s
(1)
k + s

(2)
k

Theorem

Assume that F : R
n → R

n is two times continuously differentiable and F ′′ is Lipschitz
continuous in a neighborhood N of a point x∗ where F (x∗) = 0 and F ′(x∗) is
nonsingular. For each α there exists ε > 0 so that for all x0 so that ‖x0 − x∗‖ ≤ ε and
x0 ∈ N , the iterates {xk} in the Halley class are well defined, ‖xk − x∗‖ ≤ ε converges
to x∗ with at least Q-order 3.

The proof is to show the Schwetlick (1979) class is equivalent to the Halley class

(G.Gundersen and T.Steihaug(2007)) proposed by Gutiérrez and Hernandez (1997)

and recall the convergence result of Schwetlick (1979).
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Computational Cost

For k = 0, 1, . . .

Solve for s
(1)
k : F ′(xk )s

(1)
k = −F (xk )

Solve for s
(2)
k : [F ′(xk ) + αF ′′(xk )s

(1)
k ]s

(2)
k = − 1

2
F ′′(xk )s

(1)
k s

(1)
k

Update the iterate: xk+1 = xk + s
(1)
k + s

(2)
k

Solving two linear systems of equations using LU factorization and computing

F ′′(xk )s
(1)
k constitute the major linear algebra cost for each iteration. The cost of

solving a linear system and computing F ′′(x)s are of O(n3) in terms of arithmetic
operations. This means

Work(One step Halley)

Work(One step Newton)
= O(1)

A key issue

Can efficient use of sparsity change this ratio?

We need to look at a smaller class of problems from optimization.
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Unconstrained Optimization Terminology

Let f : R
n → R be a three times continuously differentiable function. For a given

x ∈ R
n let

gi =
∂f (x)

∂xi
, Hij =

∂2f (x)

∂xi∂xj
, Tijk =

∂3f (x)

∂xi∂xj∂xk
.

The unconstrained optimization problem:

min
x∈Rn

f (x)⇒ ∇f (x) = 0

The n × n matrix H is symmetric Hij = Hji , i 6= j .
The n × n × n tensor T is super-symmetric

Tijk = Tikj = Tjik = Tjki = Tkij = Tkji , i 6= j , j 6= k, i 6= k

f (x), g = ∇f (x), H = ∇2f (x) and T = ∇3f (x).
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Induced sparsity (1)

If an element of the Hessian matrix

∂2f (x)

∂xi∂xj
= 0, for all x ,

then for this (i , j) we have that

Tijk =
∂3f (x)

∂xi∂xj∂xk
= 0,

and all the permutations of (i , j , k).

Definition

We say that the sparsity structure of the third derivative (tensor) is induced by
the sparsity structure of the second derivative (Hessian).
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Induced sparsity (2)

Let Z be the set of indices (i , j) where,

∂2f (x)

∂xi∂xj
= 0, for all x .

Define

N = {(i , j)|1 ≤ i , j ≤ n}\Z

and N will be the set of indices for which the elements in the Hessian matrix at x in
general will be nonzero. Assume (i , i) ∈ N . It follows that we only need to consider
the elements (i , j , k) in the tensor, for which

(i , j) ∈ N , (j , k) ∈ N and (i , k) ∈ N .
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Stored elements of structured Hessian matrices
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9× 9 arrowhead and tridiagonal symmetric matrix. � stored element and � a

non-zero element not stored due to symmetry.
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Sparsity structure of the tensors

Stored elements of tensors induced by an arrowhead and tridiagonal symmetric
matrix where n = 9.
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Ratio of Newton’s and Halley’s method

Let f : R
n → R be a three times continuously differentiable and let x∗ be a local

minimizer where the Hessian matrix is positive definite.

Theorem

Assume that x0 is close to x∗ so that the methods converge. The ratio of the cost in
number of arithmetic operations of one step of Halley’s method and one step of
Newtons method satisfies

2 ≤
flaop(One Step Halley)

flaop(One Step Newton)
≤ 5

when the linear system is solved using LDLT and not including the cost of computing
the function and its derivatives.

Note the following implicit assumptions: only the nonzero elements in the symmetric

part of the tensor T and Hessian matrix H are stored. flaop - number of floating point

arithmetic operations (+,−, /, ∗).
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Test functions

Chained Rosenbrock (Toint 1982):

f (x) =
n∑

i=2

[6.4(xi−1 − x
2
i )2 + (1 − xi )

2].

Generalized Rosenbrock (Schwefel 1977):

f (x) =

n−1∑

i=1

[(xn − x
2
i )2 + (xi − 1)2].

Broyden Banded (Broyden 1971),

f (x) =

n∑

i=1

[xi (2 + 15x
2
i ) + 1 −

∑

j∈Ji

xj(1 + xj)]
2
.

where

Ji = {j : j 6= i , max{1, i − ml} ≤ j ≤ min{n, i + mu}}

and ml = 5 and mu = 1.
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Chained Rosenbrock
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Generalized Rosenbrock
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Broyden Banded
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Test functions:General sparsity

A Trigonometric Function (Toint 1978), the sparsity pattern is given by N .

f (x) =
∑

(i,j)∈N

αij sin(βixi + βjxj + cij ),

where the αij , βi , βj and cij are constants.

Matrix Properties

Matrix n nnz(H) nnz(L + D)∗

nos4 100 347 632
nos5 468 2820 18437

gr3030 900 4322 16348
nos3 960 8402 31314

nasa2910 2910 88603 202248
s3rmt3m3 5357 106526 429359

PresPoisson 14822 365313 2507325

*Symbolic phase: Approximate Minimum Degree ordering AMD Version 2.2 by P. R. Amestoy, T. A. Davis, I. S.

Duff 2007.
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Trigonometric Function

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

Ratio of elapsed time

Number of unknowns (n)

O
n

e
 S

te
p

 H
a

lle
y/

O
n

e
 S

te
p

 N
e

w
to

n

Induced excl. func

Trond Steihaug Higher Order Methods for Nonlinear Equations



Nonlinear system of equations
Computing a sparse Jacobian

Halley’s method
Sparsity

Concluding remarks first part

1 Higher order methods suitable when

Very high accuracy needed for the solution
Need ’bull’s eye’ for a noisy function
AD is available or taking derivatives are no pain

2 In most global methods Newton can be substituted by Halley.

3 Preliminary numerical results indicate that super Halley is as efficient as
Newton’s method.
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Newton’s Method

Given a nonlinear function F : R
n → R

n: Solve F (x) = 0.

Given x0 ∈ R
n

while not converged do
Compute F ′(xk)
Solve F ′(xk)sk = −F (xk)
Update xk+1 = xk + sk

end-while

Column j of the Jacobian matrix at x

Fj
′ = ∂

∂xj
F (x)

can be computed by AD (or approximated by a finite difference).

∂
∂xj

F (x) = F ′(x)ej ≈
1
ε{F (x + εej) − F (x)}
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Assumptions

Basic Assumption

The sparsity pattern of the Jacobian matrix is known a priori and
independent of the actual values of x .

The sparsity pattern of the Jacobian matrix is known a priori
and independent of the actual values of x .

Can be computed as in AD for a neighbourhood of x

If we need one or more components of F at x we need to
compute the whole vector F (x)

It is more efficient to evaluate the vector F (x) than to
evaluate each component of F (x) separately: common
sub-expressions are evaluated only once
F is a computer subroutine that returns the vector F (x)
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The Beginning
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The CPR Method [Curtis, Powell, and Reid (1974)]

A =



















0 × 0 0 0
× × · · · 0 0 0
× 0 × × 0
...

...
...

...
× 0 · · · 0 × ×
0 × 0 0 ×



















j k

F ′
j + F ′

k ≈ A(:, j) + A(:, k) = A(ej + ek )
1

ε
[F (x + ε(ej + ek ))− F (x)]

Two columns are structurally orthogonal if they do not contain nonzeros in the same
row position.

Partition the columns into structurally orthogonal groups
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The Three Steps of the CPR method

1 Obtain the partitioning using a priori structural information

2 Compute the actual elements in the compressed matrix using
finite differences or AD.

3 Reconstruct the elements in the Jacobian matrix.
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The CPR Partitioning: A Greedy Algorithm

Let C ⊂ {1, 2, · · · , n} be a set of column indices of A. If A(:, j) is structurally
orthogonal to A(:, k), ∀k ∈ C we write

A(:, j)⊥s{A(:, k) : k ∈ C} ( Notation: A(:, j)⊥s∅)

index set := {1, 2, · · · , n}
p := 0
while index set 6= ∅ do

p := p +1
Cp := ∅
for j ∈ index set and A(:, j) ⊥s{A(:, k) : k ∈ Cp}

Cp := Cp ∪ {j}
index set := index set \{j}

end-for
end-while

Output is structurally orthogonal groups Ci , i = 1, · · · , p
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Does it work?

IER from Minpack-2, n = 93, p = 17 (= χ(G(A)))(Griewank 2000).
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The Problem

Formulation of the problem

Obtain vectors s1, · · · , sp such that the matrix vector product

bi ≡ Asi , i = 1, · · · , p or B ≡ AS

determine the m × n matrix A uniquely.

The n × p matrix S is called the seed matrix and the m × p matrix B is called the
compressed matrix.

This is a too general formulation of the problem to be useful!
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Main Steps in Computing A (Procedure)

A: m × n matrix to be determined

ρi : Number of nonzero entries in row i of A

vi : vector of column indices of nonzero entries in row i of A

1 Obtain the n × p “seed” matrix S .

2 Seeding or Compression. Obtain B (= AS).

3 Harvesting or reconstruction. Determine the nonzero elements of A

row-by-row:

a. Identify the reduced seed matrix Ŝi ∈ Rρi×p for A(i , vi )

Ŝi = S(vi , :)

b. Solve for the ρi unknown elements aik 6= 0 of A(i , :)

Ŝi
T
A(i , vi )

T = B(i , :)T

Bottom Line: Obtain a suitable seed matrix S ∈ Rn×p any square submatrix of which

is numerically well-conditioned and easy to solve
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Harvesting row i of A

A S B

i
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Harvesting the unknown entries with column indices k1, k2, and k3 in row i of A

Ŝi
T
A(i , vi )

T = B(i , :)T .
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Classification of Jacobian Matrix Determination Methods (Powell and Toint ,1979)

Let α = A(i , vi )
T ∈ Rρi and β = B(i , :)T ∈ Rp . Then the unknown elements satisfy

the overdetermined system (ρi ≤ p)

ŜT α = β

Let ρi = p. If Ŝ

is a permutation matrix then we have direct determination

can be permuted to a triangular matrix then we have determination by
substitution

is a general nonsingular matrix we have determination by elimination.

Fact: The minimal number of matrix vector products p for any method
is

p = ρ ≡ max
i

ρi .
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Intersection Graph

Graph Concepts
A ∈ Rm×n, G(A) = (V , E) V = {A(:, 1), · · · , A(:, n)}
E = {{A(:, i), A(:, j)} : A(:, i) 6⊥S A(:, j)}.

A p-coloring of the vertices of G is a function φ : V → {1, 2, · · · , p} such that
{u, v} ∈ E ⇒ φ(u) 6= φ(v). The chromatic number χ(G(A)) is the smallest p for
which G(A) has a p-coloring.

Column partition
A partition of the columns of A is a division of columns into groups C1, C2, · · · , Cp

such that each column belongs to one and only one group.

Consistent partition

A column partition where each group consists of structurally orthogonal columns is

called a consistent (with direct determination) partition.
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Consistent partitioning and coloring (Coleman and Moré[1983])

φ is a coloring of G(A) if and only if φ induces a consistent partition of the
columns of A

Coloring G(A) is as hard as coloring a general graph

The CPR method is a greedy coloring method
Consider vertices vk = A(:, k) in their given order 1, · · · , n.

for k = 1, · · · , n
Assign vertex vk the smallest possible color

Ordering of the vertices affects the coloring.

Early numerical testing on the DSM code indicated p close to ρ = maxi ρi or
equal largest identified clique.
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Some CPR implementations

Matrix m n nnz ρ DSM GMP
af23560 23560 23560 484256 21 41 32
cage11 39082 39082 559722 31 62 81
cage12 130228 130228 2032536 33 68 96
e40r0100 9661 9661 306356 62 70 66
ihr34 14270 14270 307858 63 63 65
ihr71c 70304 70304 1528092 63 63 65

DSM: Coleman, Garbow and Moré 1984
GMP: Gebremedhin, Manne and Pothen 2005
All these methods have storage θ(nnz(A)).

Two issues: Approx v.s. exact (finding χ(G(A))) and is this the best we can do (in
terms of p)?
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Conjecture: The chromatic number of the intersection graph is the minimal p
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The Eisenstat Counter Example

A =



















a11 0 0 a14 0 0
0 a22 0 0 a25 0
0 0 a33 0 0 a36

a41 a42 a43 0 0 0
a51 0 0 0 a55 a56

0 a62 0 a64 0 a66

0 0 a73 a74 a75 0



















=

(

A1

A2

)

G(A) is complete so S = I and p = 6.

OR

1 estimate the the first 3 rows (n/2) of A ≡ A1 using 2 matrix-vector products

2 estimate the last 4 (n/2 + 1) rows of A ≡ A2 using 3 (n/2) matrix-vector
products

yields p = 5 (n/2 + 2) matrix-vector products to determine A directly v.s. 6 (n).
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The Eisenstat Counter Example

AS =





















a11 0 0 a14 0 0
0 a22 0 0 a25 0
0 0 a33 0 0 a36

a41 a42 a43 0 0 0
a51 0 0 0 a55 a56

0 a62 0 a64 0 a66

0 0 a73 a74 a75 0



































1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1















Compression

B = AS =





















a11 a14 a11 + a14 0 0
a22 a25 0 a22 + a25 0
a33 a36 0 0 a33 + a36

a41 + a42 + a43 0 a41 a42 a43

a51 a55 + a56 a51 a55 a56

a62 a64 + a66 a64 a62 a66

a73 a74 + a75 a74 a75 a73




















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The Eisenstat Counter Example (Reconstruction)

ŜT α = β

For example the nonzero elements in row 5 is determined in the reduced linear system











1 0 0
0 1 1
1 0 0
0 1 0
0 0 1















α1

α2

α3



 =











β1

β2

β3

β4

β5











From Compression











β1

β2

β3

β4

β5











=











a51

a55 + a56

a51

a55

a56











which gives





α1

α2

α3



 =





a51

a55

a56



 .
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Optimal Direct Determination

The element isolation graph (Newsam and Ramsdell, 1983) associated with A ∈ Rm×n

is denoted GI = (V , E) where V = {aij 6= 0 : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and

E = {{aij , apq} | aij is not isolated from apq}.

NR’83 called structural orthogonal columns for Variable Isolation.
Characterization of Optimal Direct Determination (Hossain and Steihaug, 2003, 2006)

Theorem

The minimal number of matrix-vector multiply in any direct determination method is
p = χ(GI(A)).
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The Eisenstat Example Revisited - Seeding





















a11 0 0 a14 0 0
0 a22 0 0 a25 0
0 0 a33 0 0 a36

a41 a42 a43 0 0 0
a51 0 0 0 a55 a56

0 a62 0 a64 0 a66

0 0 a73 a74 a75 0



































0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0
1 0 1 0
0 1 1 0















=





















a14 a14 a11 a11

a25 a22 a25 a22

a33 a36 a36 a33

a43 a42 a41 a43+ a41 + a42

a55 a56 a51 + a55 + a56 a51

a64 a62 + a64 + a66 a66 a62

a73 + a74 + a75 a74 a75 a73




















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The Eisenstat Example Revisited - Harvesting

Consider row 5. We can reconstruct the matrix with p = 4 (v.s. 5).









0 1 0
0 0 1
1 1 1
1 0 0













α1

α2

α3



 =









β1

β2

β3

β4

















β1

β2

β3

β4









=









a55

a56

a51 + a55 + a56

a51









which gives





α1

α2

α3



 =





a51

a55

a56



 .
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Matrices with Optimal DD where DSM is optimal

Matrix DSM Element Isolation
Nodes Edges χ(G(A)) Nodes Edges χ(GI(A))

ash219 85 219 4 438 2205 4
abb313 176 3206 10 1557 65390 9
ash331 104 331 6 662 4185 4
will199 199 960 7 701 7065 7
ash608 188 608 6 1216 7844 4
ash958 292 958 6 1916 12506 4

Examples from the Harwell package where CPR gives optimal coloring

p = χ(G(A)) > ρ =
m

max
i=1

ρi

.

Trond Steihaug Higher Order Methods for Nonlinear Equations

Nonlinear system of equations
Computing a sparse Jacobian

The CPR method
Direct Determination

Hard Coloring Instances (2008)

Matrix |G | |E | (1) (2) (3) (4) (5) (6) Optimal
abb313 1557 53356 11 10 9 Gap
ash331 662 4185 4 5 4 4 4 Bound
ash608 1216 7844 5 4 4 Bound
ash958 1916 12506 6 4 4 Bound
will199 701 6772 7 7 7 7 Gap

(1) Croitoru, Gheorghies, and Apetrei (2005)
(2) Galinier, Hertz and Zufferey (2005)
(3) Mendez-Diaz Dukanovic (2005)
(4) Bui, Nguyen, Patel, and Phan (2005)
(5) Desrosiers, Galinier, and Hertz (2005)
(6) Mendez-Diaz (2005)

Bound: Lower bound equal p.
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Symmetric Matrix

Direct determination of a symmetric matrix (Hessian) Powell and
Toint (1979):
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Rows and Columns - Forward and Reverse in AD

A =











× × × × ×
× × 0 0 0
× 0 × 0 0
× 0 0 × 0
× 0 0 0 ×











, W T = (1 0 0 0 0), S =











1 0
0 1
0 1
0 1
0 1











The Bipartition Problem

Given A ∈ Rm×n obtain vectors w1, . . . , wr ≡W and s1, . . . , sp ≡ S such that for

each aij 6= 0 there is an index lc such that aij = bilc or that there is an index lr such

that aij = cjlr where W T A = CT and AS = B and with p = pc + pr minimized
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Method using forward AND Reverse mode of AD

Coleman and Verma 1996. Alternate between reverse (determine a group of rows) and
forward (determine a group of columns) mode of AD.
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Symmetry II: A ”New” Direct Method (Thapa, 1980)

A =



























× × ∗ ∗ 0 0

∗ × × 0 ∗ 0

× ∗ × 0 0 ∗

× 0 0 × 0 0

0 × 0 0 × 0

0 0 × 0 0 ×



























, S =



























1 0 0

0 1 0

0 0 1

0 0 1

1 0 0

0 1 0



























Obtain a partitioning with the extension that at most one overlap is allowed for each
column group and let one of the overlapping columns be in the new group. Note that
the harvesting phase is not purely row-wise. We are now leaving DD.
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Concluding remarks second part

1 Direct Determination

Optimal DD is very expensive
Heuristic Methods often very close to optimal column partitioning
The Harvesting is very cheap for DD
DD is often far from optimal Jacobian determination (=ρ = maxi ρi )

2 Symmetry must be utilized

3 Minimizing p is done once, seeding and harvesting for every iteration.

The End
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