Some (important) problems in Quantum Chemistry

Ulf Ekström
Theoretical Chemistry
Vrije Universiteit Amsterdam
Wenner–Gren postdoc

January 26, 2010
What is Quantum Chemistry?

Apply quantum theory to problems in chemistry (Schrödinger, Slater, Löwdin ...)

► Optical properties of molecules (spectroscopy)
► What is a chemical bond?
► Determine molecular structure (optimization)
► Chemical reaction mechanisms and rates
► Dynamical properties of electrons and atoms
Structure determination
Electron dynamics and Photochemistry

Photosystem II:

How can photosynthesis be so efficient? Quantum energy transport. 10^5 atoms..
What do we know?

➤ We know the relevant laws of physics, very very well (too well). Schrödinger equation with Hamiltonian

\[H = \sum_k -\frac{\nabla^2}{2m_k} + \sum_{i \neq k} \frac{q_i q_k}{r_{ik}} \]

➤ We can easily solve the problem for one particle:

\[H\Psi = \left[-\frac{\nabla^2}{2m} + V(r) \right] \Psi = E\Psi \]
Problem One

Space and Time

$10^1 - 10^5$ particles
Times $10^{-15} - 10^{-12}$ s

10^{23} particles
Times $10^{-3} - 10^6$ s

Brute force is impossible. We need clever connections between micro and macro.
Problem Two

Electron Correlation

- Quantum N-body problem
- Quantum calms down chaos, but
- Wave function complexity N^N

$$\Psi = \Psi(r_1, r_2, \ldots r_N)$$

- Nevertheless, chemistry is full of concepts: Atoms, bonds, functional groups
- Suggests approximate theories!
- (Counter-example: Spin glasses)
Density Functional Theory (DFT)

- Kohn and {Hohenberg, Sham}: “Ψ(\(r_1, r_2, \ldots\)) is too much”
- Observable properties come from the electron density \(\rho(r)\)!
- Proof that \(E = E[\rho]\), but no closed form.

<table>
<thead>
<tr>
<th></th>
<th>WFT</th>
<th>DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>(\Psi(r_1, r_2, \ldots r_N))</td>
<td>(\rho(r))</td>
</tr>
<tr>
<td>Energy</td>
<td>Trivial</td>
<td>Complicated Unknown (kernel trick?)</td>
</tr>
<tr>
<td>Formal Scaling</td>
<td>(N^N)</td>
<td>(N)</td>
</tr>
<tr>
<td>Practical Scaling</td>
<td>(N^6-N^8)</td>
<td>(N^2-N^3)</td>
</tr>
<tr>
<td>Nr atoms</td>
<td>(1-20)</td>
<td>(100-1000)</td>
</tr>
</tbody>
</table>

Approximate DFT consumes a majority of Swedish supercomputer time!
Density Functional Theory in practice

DFT Energy:

\[E_{\text{DFT}} = E_{\text{Kinetic}} + E_{\text{Electrostatic}} + \int_{\mathbb{R}^3} \epsilon_{XC}(\rho(r))dV \]

Only approximate \(\epsilon_{XC}(\rho) \) are known.

Leads to a *one particle* eigenvalue problem

\[H_{KS}\psi_i = \left[-\frac{\nabla^2}{2m} + V(r) \right] \psi_i = E_i \psi_i \]

Reduction from \(\Theta(N^N) \) to \(\Theta(N) \)! But \(\epsilon_{XC} \) is very difficult to work with.
Introducing a Basis

To solve

\[H_{KS}\psi_i = \left[-\frac{\nabla^2}{2m} + V(r) \right] \psi_i = E_i \psi_i \]

don’t discretize in real space! Use a problem specific basis!

Atom centered Gaussian Type Orbitals.
Generating functions

We can generate a basis

with derivatives!

\[\varphi_n(r) = \frac{\partial^n}{\partial R^n} e^{-\alpha(r-R)^2} \]

Perfect for AD! Here \(e^{-\alpha(r-R)^2} \) is the Generating Function.

Generating functions are very powerful for combinatorics (look it up)