
VERSION NOVEMBER 30, 2004 1

A Binary Level Set Model and some Applications
to Mumford-Shah Image Segmentation

Johan Lie?, Marius Lysaker† and Xue-Cheng Tai ‡

Abstract— In this work we propose a PDE based level set
method. Traditionally interfaces are represented by the zero
level set of continuous level set functions. We instead let the
interfaces be represented by discontinuities of piecewise constant
level set functions. Each level set function can at convergence
only take two values, i.e. it can only be 1 or -1, and is thus
related to phase-field methods. Some of the properties of standard
level set methods are preserved in the proposed method, while
others are not. Using this new level set method for interface
problems, we need to minimize a smooth convex functional under
a quadratic constraint. The level set functions are discontinuous
at convergence, but the minimization functional is smooth. We
show numerical results using the method for segmentation of
digital images.

Index Terms— image segmentation, image processing, PDE,
variational, level set, piecewise constant level set functions.

I. INTRODUCTION

THE level set method proposed by Osher and Sethian [1] is
a versatile tool for tracing interfaces separating a domain

Ω into subdomains. Interfaces are treated as the zero level
set of some functions. Moving the interfaces can be done by
evolving the level set functions instead of directly moving
the interfaces. This idea is now used on a broad spectrum
of problems, including image analysis, reservoir simulation,
inverse problems, computer vision and optimal shape design
[2]–[8]. For a recent survey on the level set methods see [9]–
[12]. Newton type of fast methods have been successfully
used for these level set formulations in [7]. In this work,
we propose a variant of the level set method. This variant
extends the level set models proposed in [13], [14] and it is
also closely related to the phase-field methods [15]–[18]. The
proposed method can be used for various inverse problems,
but in this paper we restrict ourselves to segmentation of
digital images. For a given digital image u0 : Ω → R, the
aim is to separate Ω into a set of subdomains Ωi such that
Ω = ∪ni=1Ωi and u0 is nearly a constant in each Ωi. The
essential contribution of this work is to propose a mathematical
mechanism to use the phase field idea for image segmentation
and related inverse problems. The new idea we propose is to
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use a binary level set function to represent piecewise constant
(or polynomial) functions. The way we measure the length
and area of the subdomains seems to be new. Moreover, using
a constrained minimization approach to find the regions also
seems to be different from the other approaches, c.f. [13]–[17].
We especially mention that the method proposed here is truly
variational. In order to study the fundamental properties of
the proposed models, we have chosen to use the most stable
algorithm, i.e. the steepest decent method, in the tests given
here.

One general image segmentation model was proposed by
Mumford and Shah in [19]. Numerical approximations are
thoroughly treated in [20], [21]. Using this model, the image
u0 is decomposed into Ω = ∪iΩi ∪ Γ, where Γ is a curve
separating the different domains. Inside each Ωi, u0 is ap-
proximated by a smooth function. The optimal partition of Ω
is found by minimizing the Mumford-Shah functional (8). This
is explained in the next section. Following the Mumford-Shah
formulation for image segmentation, Chan and Vese [2], [22]
solved the minimization problem using level set methods. The
interface Γ is traced by the level set functions. Motivated by
the Chan-Vese (CV) approach, we will in this article solve the
segmentation problem in a different way, i.e. by introducing
a piecewise constant level set function. Instead of using the
zero level of a function to represent the interface between
subdomains, we let the interface be represented implicitly by
the discontinuities of a level set function. A two-phase seg-
mentation is accomplished by requiring the level set function
φ to take the value 1 in one of the regions and −1 in the other
region, by enforcing φ to satisfy φ2 = 1. In order to divide
the domain into several subdomains, we use a set of functions
φi satisfying φ2

i = 1. Using N level set functions, we can
identify 2N phases. See also a recent work [23], where we
have developed a technique which only use one discontinuous
level set function for representing multiple phases. Another
related techniques are considered in [18], [24].

The rest of this article is structured as follows. In §II
we give a brief review of the traditional level set method,
and the phase-field methods. Our model is formulated in
§III. In §IV we apply this model for image segmentation.
The segmentation problem is formulated as a minimization
problem with a smooth cost functional under a quadratic
constraint. Our constraint is analogous to the potential used
in phase-field methods [18]. The minimization functional is
essentially the Mumford-Shah functional associated with the
proposed level set model. We propose two algorithms for
solving the segmentation problem. In §V we show numerical
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examples, before we conclude the paper in §VI.

II. SOME EXISTING METHODS

The main idea behind the level set formulation is to repre-
sent an interface Γ(t) bounding a possibly multiply connected
region in Rn by a Lipschitz continuous function φ, changing
sign at the interface, i.e.





φ(x, t) > 0, if x is inside Γ(t),
φ(x, t) = 0, if x is at Γ(t),
φ(x, t) < 0, if x is outside Γ(t).

(1)

In numerical implementations, often regularity is imposed on
φ to prevent the level set function of being too steep or flat
near the interface. This is normally done by requiring φ to be
the signed distance function to the interface





φ(x, t) = d(Γ(t), x), if x is inside Γ(t),
φ(x, t) = 0, if x is at Γ(t),
φ(x, t) = −d(Γ(t), x), if x is outside Γ(t),

(2)

where d(Γ(t), x) denotes Euclidian distance between x and
Γ(t). We emphasize that requiring (2) is a technicality to
prevent instabilities in numerical implementations. Having
defined the level set function φ as in (2), there is an one to
one correspondence between the curve Γ and the function φ.
The distance function φ obeys the Eikonal equation

|∇φ| = 1. (3)

The solution of (3) is not unique in the distributional sense.
Finding the unique vanishing viscosity solution of (3) can be
done by solving the following initial value problem to steady
state

φt + sgn(φ̃)(|∇φ| − 1) = 0, (4)
φ(x, 0) = φ̃(x). (5)

In the above, φ̃ may not be a distance function. When the
steady state of equation (4) is reached, φ will be a distance
function having the same zero level curve as φ̃. This is com-
monly known as the reinitialization procedure. For numerical
computations this procedure is crucial, and many numerical
finite difference schemes exists. See [3], [9], [10], [25] for
some details. Alternatively, the problem (3) can be efficiently
solved using fast marching methods [26], [27].

The interface Γ(t) is implicitly moved according to the
nonlinear PDE

∂φ

∂t
+ v(φ) · ∇φ = 0, (6)

where v(φ) is a given velocity field. This vector field can
depend on geometry, position, time and internal or external
physics. Usually only the velocity normal to the interface vN
is needed, and φ is then moved according to the modified
equation

∂φ

∂t
+ vN (φ)|∇φ| = 0. (7)

A. Level Set Methods and Image Segmentation

The active contour (snake) model evolves a curve Γ(t) in
order to detect objects in an image u0 [28]. The curve is
moved from an initial position Γ(0) in the direction normal
to the curve, subject to constraints in the image. An edge
detector function g(∇u0) indicates when Γ(t) is situated at
the boundary of an object. One limitation of the original
snake model is that the curve is represented explicitly, thus
topological changes like merging and breaking of the curve
may be hard to handle. To address this problem, a level set
formulation of the active contour model was introduced in
[29]. Later, Chan and Vese introduced a level set model for
active contour segmentation, with the very important property
that the stopping criteria is independent of ∇u0 [2]. This
means that boundaries not defined by gradients are detectable.
The evolvement of the curve is based on the general Mumford-
Shah formulation of image segmentation, by minimization of

FMS(u,Γ) =

∫

Ω\Γ

|u− u0|2dx + β|Γ|+ ν

∫

Ω\Γ

|∇u|2dx. (8)

In the above, |Γ| is the length of Γ. A minimizer of this func-
tional is smooth in Ω\Γ. The piecewise constant Mumford-
Shah formulation of image segmentation is to find a partition
of Ω such that u in Ωi equals a constant ci, and Ω = ∪ni Ωi∪Γ.
The two last terms in (8) are regularizers measuring curve-
length of the curves bounding the phases, and smoothness of
u in Ω\Γ. β and ν control the amount of regularization and
smoothness. Based on (8), Chan and Vese [2] proposed the
following minimization problem for a two-phase segmentation

min
c1, c2, φ

{∫

Ω

|u0 − c1|2H(φ)dx+

∫

Ω

|u0 − c2|2(1−H(φ))dx

+ν

∫

Ω

H(φ)dx+β

∫

Ω

δ(φ)|∇φ|dx
}
. (9)

Here φ is the level set function satisfying (1), H(φ) is the
Heaviside function: H(φ) = 1 if φ ≥ 0 and H(φ) = 0 if φ <
0, and δ(φ) is the Dirac-delta function which by definition
only collects the zero level set of φ. Since δ(φ) is a singular
function, a regularized approximation δε(φ) must be used
in computations [2]. Finding a minimum of (9) is done by
introducing an artificial time variable, and moving φ in the
steepest descent direction to steady state

φt = δε(φ)

(
−(u0 − c1)2+(u0 − c2)2− ν + β∇·

( ∇φ
|∇φ|

))
,

φ(0) = φ0. (10)

The recovered image is a piecewise constant approximation to
u0. This level set framework was later generalized to multiple
phase segmentation using multiple level set functions [22].

In this paper we solve the piecewise constant Mumford-
Shah segmentation using a slightly different approach. We
separate the connection between the level set function and
the distance function. This means that we get rid of the reini-
tialization procedure. In our approach, we impose a quadratic
constraint on the level set functions, i.e. φ2

i = 1. Our approach
is truly variational, i.e. the equations we need to solve are
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coming from the Euler-Lagrange equations for some smooth
convex functions.

B. Phase-field Methods and Image Segmentation

The phase field methods (Van der Waals-Cahn-Hilliard
methods) can be used for determining stable configurations
of dynamical systems, for example for a fluid where the
energy W is a function of its density distribution u. The stable
configuration can be found by searching for limε→0 infuE(u)
from

E(u) =

∫

Ω

[
ε|∇u(x)|2 +

1

ε
W (u(x))

]
dx (11)

where u is constrained by
∫

Ω u(x)dx = m, the total mass of
the fluid. W : R→ R+ is a nonnegative function having the
same number of minima as phases in the fluid, with W = 0
at each minimum. W is supposed to grow at least linearly at
infinity.

This model was adapted to image segmentation in [18]. In
that work the functional

Ē =

∫

Ω

(u− u0)2dx+ ελ2

∫

Ω

f(|∇u(x)|)dx

+
η2

ε

∫

Ω

W (u(x), µ, σ)dx (12)

is minimized, and the solution to the image segmentation
problem is given by limε→0 argminuĒ. In the above, f(s) is
a function not necessarily convex. The first term is a fidelity
term, ensuring that the recovered image u is close to the
original image u0. The second term is a restoration term.
If f(s) = s2, the restoration is Laplacian and thus linear.
Other, especially non-convex choices give better restoration
properties, but a sound theoretical foundation does not exist
in this case [18]. The last term of (12) is a classification term
making sure every pixel is correctly labeled, and thus classified
into a specific phase ci. Each phase is characterized by a
Gaussian distribution N(µi, σi). Thus, some basic knowledge
of the mean µi and variance σi of each of the phases is
required. The potential W is non-negative and it only equals
zero when u = ci. The constant parameters λ and µ are
weighting the amount of restoration and classification. As
demonstrated in [18], the phase-field method is a quick method
for supervised segmentation. In our approach, we identify the
ci values and the level set functions separately. We use a
different mechanism to guarantee that the level set function
approaches some pre-set fixed values.

III. OUR APPROACH

To introduce our main idea, let us first assume that the
interface is enclosing Ω1 ⊂ Ω. By standard level set methods
the interior of Ω1 is represented by points x : φ(x) > 0, and
the exterior of Ω1 is represented by points x : φ(x) < 0, as
in (1). We instead use a discontinuous level set function φ,
with φ(x) = 1 if x is an interior point of Ω1 and φ(x) = −1
if x is an exterior point of Ω1, i.e.

φ(x) =

{
1 if x ∈ int( Ω1),
−1 if x ∈ ext( Ω1). (13)

Thus Γ is implicitly defined as the discontinuity of φ. This
representation can be used for various applications where
subdomains need to be identified. In order to use this idea
for image segmentation, we use (13). Let us assume that u0

is an image consisting of two distinct regions Ω1 and Ω2, and
that we want to construct a piecewise constant approximation
u to u0. Let u(x) = c1 in Ω1, and u(x) = c2 in Ω2. If
φ(x) = 1 in Ω1, and φ(x) = −1 in Ω2, u can be written as
the sum

u =
c1
2

(φ+ 1)− c2
2

(φ− 1). (14)

The formula (14) can be generalized to represent functions
with more than two constant values by using multiple func-
tions {φi} following the essential ideas of the level set
formulation used in [4], [22]. A function having four constant
values can be associated with two level set functions {φi}2i=1

satisfying φ2
i = 1. More precisely, a function given as

u = c1
4 (φ1 + 1)(φ2 + 1)− c2

4 (φ1 + 1)(φ2 − 1)

− c34 (φ1 − 1)(φ2 + 1) + c4
4 (φ1 − 1)(φ2 − 1), (15)

is a piecewise constant function of the form

u(x) =





c1, if φ1(x) = 1, φ2(x) = 1,
c2, if φ1(x) = 1, φ2(x) = −1,
c3, if φ1(x) = −1, φ2(x) = 1,
c4, if φ1(x) = −1, φ2(x) = −1.

Introducing basis functions ψi as in the following

u =c1
1

4
(φ1 + 1)(φ2 + 1)
︸ ︷︷ ︸

ψ1

+c2 (−1)
1

4
(φ1 + 1)(φ2 − 1)

︸ ︷︷ ︸
ψ2

+ · · · , (16)

we see that u can be written as

u =

4∑

i=1

ciψi. (17)

For more general cases, we can use N level set functions
to represent 2N phases. To simplify notation, we define the
vectors φ = {φ1, φ2, . . . , φN} and c = {c1, c2, . . . , c2N }.
For i = 1, 2, . . . , 2N , let (bi−1

1 , bi−1
2 , . . . , bi−1

N ) be the binary
representation of i− 1, where bi−1

j = 0 ∨ 1. Furthermore, set

s(i) =

N∑

j=1

bi−1
j , (18)

and write ψi as the product

ψi =
(−1)s(i)

2N

N∏

j=1

(φj + 1− 2bi−1
j ). (19)

Then a function u having 2N constant values can be written
as the weighted sum

u =

2N∑

i=1

ciψi. (20)
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If the level set functions φi satisfy φ2
i = 1 and ψi are defined

as in (17) or (19), then supp(ψi) = Ωi, ψi = 1 in Ωi, and
supp(ψi) ∩ supp(ψj) = ∅ when j 6= i. This ensures non-
overlapping phases, and in addition

⋃
i supp(ψi) = Ω, which

prevents vacuums. ψi is the characteristic function of the set
Ωi.

If the level set functions satisfy φ2
i = 1, then we can use

the basis functions ψi to calculate the length of the boundary
of Ωi and the area inside Ωi, i.e.

|∂Ωi| =
∫

Ω

|∇ψi|dx, and |Ωi| =
∫

Ω

ψidx. (21)

The first equality of (21) shows that the length of the boundary
of Ωi equals the total variation of ψi. See [30] for more
explanations about the total variations of functions that might
have discontinuities. In numerical computations, we use the
approximation

∫

Ω

|∇ψi|dx .
=

∫

Ω

√
(ψi)2

x + (ψi)2
y + ε dx, (22)

for a small ε and the derivatives (ψi)x, (ψi)y are approximated
by finite differences.

In fact, measuring the length of boundaries by this represen-
tation is more accurate than using

∫
Ω
δ(φi)|∇φi|dx which is

done in [2], [22]. This is due to the fact that their regularizer
does not treat all edges equally, by measuring some edges
once and other edges twice, i.e. some edges are treated as
more important than other edges, as pointed out by Chan
and Vese [22]. Our method on the contrary counts every
edge twice, and thus all the edges are treated equally. A
simple example illustrating the difference between the two
regularizers is shown in Fig. 1. Using

∫
Ω
δ(φi)|∇φi|dx as the

regularizer, the length of the dashed lines in Fig. 1(b) are
counted once while the thick line is counted twice. Using our
approach, the length of all the lines are counted twice.

(a)

φ1 > 0
φ2 < 0

φ1 > 0
φ2 > 0

φ1 < 0
φ2 > 0

(b) (c)

Fig. 1. (a) A simple image consisting of three phases. (b) IfR
Ω
δ(φi)|∇φi|dx is used as a regularizer, the different edges are not treated

in a similar fashion.The edge with the (thick) dashed line is measured once
and the other (thick) edges are measured twice. Moreover, in general it is
impossible to determine how each edge is supposed to be measured. (c) Using
our representation, all edges are measured two times.

Before we explain our model in more detail, we mention
two related works. Song and Chan solved the segmentation
problem in a very elegant way in [14]. They minimize the
functional (9) by a discrete algorithm, by using the fact
that only the sign of the function φ is needed in (9) and
not φ itself. The result is a very quick algorithm, but it is

not variational. Gibou and Fedkiw proposed to link k-Means
clustering methods with level set methods, and thus managed
to construct an algorithm with the speed of clustering methods
and the robustness of level set methods [13].

IV. MINIMIZATION PROBLEM

We have now introduced a way to represent a piecewise
constant function u by using the binary level set functions.
Based on this we propose to minimize the following functional
to find a segmentation of a given image u0

F (φ, c) =
1

2

∫

Ω

|u− u0 | 2dx+ β

2N∑

i=1

∫

Ω

|∇ψi|dx. (23)

In the above, β is a nonnegative parameter controlling the
regularizing, u is a piecewise constant function depending
on φ and c, as in (20). The first term of (23) is a least
square functional, measuring how well the piecewise constant
image u approximates u0. The second term is a regularizer
measuring the length of the edges in the image u0. Considering
the constraints imposed on the level set functions, we find
that the segmentation problem is the following constrained
minimization problem

min
φ,c

F (φ, c), subject to φ2
i = 1, ∀ i. (24)

Recall that φ is a vector having N elements φi. For notational
simplicity, we introduce a vectorK(φ) of the same dimension
as φ with Ki(φ) = φ2

i − 1. It is easy to see that

φ2
i = 1, ∀i ⇔ K(φ) = 0. (25)

This leads to two related iterative algorithms for image seg-
mentation, presented in the next section.

We see that the functional (24) is related to the functional
(12) used in phase-field segmentation [18]. Both functionals
have the same fidelity term. The potential W of (12) is
analogous to our constraint K, and both methods have a
regularization term. We use two related methods to solve the
minimization problem (24), a projection Lagrangian approach,
and an augmented Lagrangian approach. If we set f(s) = s
in (12) we see that this is very similar to our regularization
term.

A. Projection Lagrangian Algorithm

The Lagrangian functional involves both F and the con-
straint K

L(φ, c,λ) = F (φ, c) +

N∑

i=1

∫

Ω

λiKidx. (26)

Here λ = {λi}Ni=1 is a vector of functions of the same
dimension as φ, called the Lagrange multipliers. Note that
when the constraint is fulfilled, the Lagrangian term vanishes,
and L = F . We search for a saddle point of (26), which in
turn will give a minimizer of (24). At a saddle point of L we
must have

∂L

∂φi
= 0,

∂L

∂ci
= 0 and

∂L

∂λi
= 0, ∀i. (27)
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The saddle point is sought by minimizing L with respect to φ
and c, and maximizing with respect to λ. By maximizing λ
the constraint must be fulfilled at convergence, otherwise the
Lagrangian term of (26) will not vanish. From the definition
of L, we see that

∂L

∂φi
=

∂F

∂φi
+

N∑

j=1

λj
∂Kj

∂φi

= (u− u0)
2N∑

j=1

cj
∂ψj
∂φi

− β
2N∑

j=1

∇·
( ∇ψj
|∇ψj |

)∂ψj
∂φi

+ 2λiφi. (28)

Using formulas (14), (15) and (19), it is easy to get ∂ψj/∂φi.
If we replace the total variation norm of ψi by an approxima-
tion as in (22), then the term

(
∇ψj
|∇ψj |

)
should be replaced

by
(

∇ψj√
|∇ψj |2+ε

)
. We take ε ≈ 1e−3 in the numerical

implementations.
Since u =

∑
i ciψi, and only the first term of F depends

on u, the derivative with respect to ci becomes
∂L

∂ci
=

∫

Ω

∂L

∂u

∂u

∂ci
dx =

∫

Ω

∂F

∂u

∂u

∂ci
dx =

∫

Ω

(u− u0)ψi dx.

(29)
The derivative of L with respect to λi essentially recovers the
constraint:

∂L

∂λi
= Ki = φ2

i − 1. (30)

All the derivatives (28), (29) and (30) must equal zero at a
saddle point of L. To find the saddle point, we shall use an
iterative algorithm. From initial guesses φ0, c0 and λ0, we
iterate towards better approximations φk, ck and λk. Since we
want the three derivatives (28), (29) and (30) to equal zero,
we increase k until none of φ, c or λ changes anymore. Then
we have arrived at a saddle point. Using this approach, we
need to choose three different schemes to get φk, ck and λk

from φk−1, ck−1 and λk−1.
First consider the minimization w.r.t. φ, which is done by

introducing an artificial time variable and finding a steady-state
solution to the PDE

φt = −∂L
∂φ

. (31)

Note here that we have no theoretical foundation regarding
existence and uniqueness of a solution of (31), but numerical
experiments at least indicates existence of solutions. At steady
state, φt = 0, which means ∂L

∂φi
= 0 ∀ i. This is exactly

what is needed for a saddle point of L. We discretize the time
derivative using a forward Euler scheme

φt ≈
φnew − φold

∆t
. (32)

Here ∆t is a small positive time step. Combining (31) with
(32), and rearranging the terms gives an updating scheme for
φi

φnewi = φoldi −∆t
∂L

∂φi
(φold, ck−1 λk−1). (33)

Observe that φi is moved in the steepest descent direction, so
this is essentially the gradient method. We use a fixed time step
∆t, determined by a trial and error approach. The curvature
term in ∂L

∂φ is the most restrictive term to the size of ∆t. After
a fixed number of iterations we let φk = φnew . If an infinite
number of iterations were done, i.e. t→∞, we would end up
with the exact minimizer of L w.r.t. φ with ck−1 and λk−1.

Secondly, we consider the minimization of L w.r.t. c, which
is done by using (20). u is a linear combination of the
basis functions, thus L is quadratic in c. This means the
minimization w.r.t. c can be done by solving the 2N × 2N

linear system Ac = b, where Aij = (ψi, ψj)L2(Ω), and
b = (u0, ψi)L2(Ω).

2N∑

i=1

(ψki , ψ
k
j )L2(Ω) c

k
i = (u0, ψ

k
i )L2(Ω), i = 1, 2 . . . 2N .

(34)
Last, an updating scheme for λ is constructed by combining

(27) with (28) and (30). A saddle point of L must satisfy

0 =
∂L

∂φi
=
∂F

∂φi
+ 2λiφi. (35)

By multiplying this equation with φi, and noting that at a
saddle point of L the constraint gives φ2

i = 1, we can set this
into (35) to get

λi = −1

2
φi
∂F

∂φi
. (36)

This is used as an updating scheme for λ:

λki = −1

2
φki
∂F

∂φi
(φk, ck). (37)

Now the three updating formulas (33), (34) and (37) are
combined to construct an algorithm using the Lagrangian
approach. This scheme is essentially a projection Lagrangian
algorithm.

Algorithm 1 (A Projection Lagrangian Method.)

Initialize c0, φ0, λ0.
1. Update φk by (33), to approximately solve

L(ck−1, φk, λk−1) = minφL(ck−1, φ, λk−1).

2. Construct u(ck−1,φk) by

u =
∑2N

i=1 c
k−1
i ψki .

3. Update ck by (34), to solve

L(ck, φk, λk−1) = mincL(c, φk, λk−1).

4. Update the multiplier by

λki = − 1
2φ

k
i
∂F
∂φi

(φk, ck), ∀i = 1, 2, . . . , N .

5. Test convergence.

If necessary, k ← k + 1, repeat.

Remark 1: The minimization w.r.t. c in step 3 should not
be done too early in the process, e.g. not before |φi| ≈ 1,
otherwise the matrix inversion in (34) becomes ill-conditioned.
Minor perturbations of the level set functions will result in
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large errors of the ci-values. If |φi| is far from 1, then ψi is
far from orthogonal to ψj , and the inner product (ψi, ψj) in
(34) will give contributions at points where it should not. This
means that the matrix inversion in (34) does not give a good
approximation to c unless |φi| ≈ 1 ∀i.

Remark 2: The time step used in the gradient iteration in
step 1 is influenced by the size of ∇·

(
∇ψi
|∇ψi|

)
. This term mea-

sures the curvature of the level curves ψi, i.e. essentially the
second order derivatives of ψi. If the curvature becomes big,
it might violate the CFL stability condition of the numerical
scheme, unless the value of β is small. Thus larger β values
require smaller time steps and vice versa. Since our numerical
scheme is explicit, this behavior is to be expected. Using a
semi-implicit or implicit scheme would make it possible to
use larger time steps, but this is not in the scope of this paper.

Remark 3: The number n of gradient iterations performed
in step 1 is usually set to a small number n ≈ 10. This
means that a gradient iteration is performed n times before
the other steps in the algorithm are done. The minimization
w.r.t. φ is therefore not exact, but increasing n → ∞ would
hopefully give an exact minimizer. We have observed that
using ten gradient iterations usually gives a sufficiently good
approximation to the exact minimizer before the other steps
of the algorithm are performed.

B. Augmented Lagrangian Algorithm

We can also solve the minimization problem by the aug-
mented Lagrangian method. This is a combination of the
multiplier method and the penalization method. Define the
augmented Lagrangian functional as

Lµ(φ, c,λ)=F (φ, c) +

N∑

i=1

∫

Ω

λiKidx+
1

2
µ

N∑

i=1

∫

Ω

K2
i dx.

(38)
Here µ > 0 is a penalization parameter, and the last term
of (38) is called a penalization term. Similarly as in the
Lagrangian approach, to minimize F (φ, c), we need to find
a saddle point of (38). Thus we need updating schemes for
φ, c and λ. Both φ and c are updated using the same
techniques as in the Lagrangian approach. Hence we only
need a new scheme for updating λ, in addition to a scheme
for updating the penalization parameter µ. These two schemes
are interconnected.

The original idea of a penalty method is to iteratively
force the constraint to be fulfilled by increasing µ to ∞.
For the augmented Lagrangian method, due to the Lagrangian
multipliers, the constraints are satisfied even if we use a
fixed penalization parameter µ. In practice, better convergence
can be obtained if we increase the value of the penalization
parameter. Let λk denotes λ at the kth iteration. Following the
approach in [31], [32], we use the following updating scheme

λk = λk−1 + µK(φk). (39)

Having determined λk−1, we minimize Lµ w.r.t. φ by the
gradient method updating scheme

φnewi = φoldi −∆t
∂Lµ
∂φi

(φold, ck−1 , λk−1
i ), (40)

where

∂Lµ
∂φi

= (u− u0)
2N∑

j=1

cj
∂ψj
∂φi

− β
2N∑

j=1

∇·
( ∇ψj
|∇ψj |

)∂ψj
∂φi

+ 2λiφi + 2µ(φ2
i − 1)φi. (41)

Like in the first algorithm, after a few iterations we set φk =
φnew. The constraints Ki are independent of the constant
values ci and thus the updating for the ci values will still
be the same.

Algorithm 2 (An augmented Lagrangian Method.)

Initialize c0, φ0, λ0,µ.
1. Update φk by (40), to approximately solve

Lµ(ck−1, φk, λk−1) = minφ Lµ(ck−1, φ, λk−1).

2. Construct u(ck−1,φk) by

u =
∑2N

i=1 c
k−1
i ψki .

3. Update ck by (34), to solve

Lµ(ck, φk, λk−1) = minc Lµ(c, φk, λk−1).

4. Update the multiplier by

λk = λk−1 + µK(φk).

5. Test convergence.

If necessary, k ← k + 1, iterate again.

This algorithm has a linear convergence and its convergence
has been analyzed in Kunisch and Tai [33] under a slightly
different context. This algorithm has also been used in Chan
and Tai [4], [34] for a level set method for elliptic inverse
problems.

Remark 1: In most of our simulations we have set µ to
be constant during the iterations. This is done to make the
simulations as stable as possible. Better convergence behavior
can be expected if µ is increased during the iterations, but be
aware of ill-conditioning if µ is increased too quickly. This is
a common approach when using the augmented Lagrangian
method. See [31], [32] for details concerning the general
algorithm.

Remark 2: As in the first algorithm, c should not be
updated too early in the process, to avoid ill-conditioning when
inverting the matrix A. See Remark 1 of Algorithm 1.

Remark 3: In this algorithm, ∆t in the gradient iteration
depends on both β and µ. A large β or µ requires a small ∆t.
The constant β can be looked at as a parameter controlling the
connectivities or oscillations of the different phases. A bigger
β value will suppress oscillations, while a bigger µ makes the
level set functions φi converge to ±1 quicker. Choosing µ too
big will reduce the influence of the fitting term F (φ, c) and
thus may increase the iteration number needed to converge to
the true solution. For practical problems, it is normally not too
difficult to find an approximate range for these two parameters.
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V. NUMERICAL EXPERIMENTS

In this section numerical results are presented. We compare
our method with the Chan-Vese CV model, qualitatively and
quantitatively. For comparability with other mehtods, most
of the images used in this section are standard images from
articles in the litterature of image processing [2], [13], [22].

Essentially the proposed model has two parameters, β and
µ. For each numerical example, we report the specific values
used for β and µ. In most of the simulations shown, we use
φ0 ≡ 0, i.e. there is no need to initialize the level set functions.
In examples where we compare with the CV model, the initial
zero level curves are circles shown on top of u0. Most of the
images are imposed with noise, and we assume the noise is
additive, i.e.

u0 = u+ η, (42)

where η is Gaussian distributed noise. For each of the ex-
amples containing noise, we report the Signal to Noise Ratio
(SNR):

SNR =
Variance of Data
Variance of Noise

. (43)

If SNR ≈ 1, the observation data is very noisy.
Even though the framework developed in this article is

applicable for multiple level set functions, we only show
numerical results using one or two level set functions. When
using two functions, there is a need for an initial approxi-
mation of c. This is done by the following process: First a
median filter is applied to the image, to produce a smoothed
temporary image utmp, e.g. utmp(xij ) is taken to be the
mean of a set of neighbor points of u0(xij ). Afterwards, a
simple isodata approach is applied on utmp to find c0, an
approximation to the optimal c. We refer the reader to [35]
for a discussion of the isodata algorithm which is based on
a thresholding of the intensity values. When searching for
only two phases, the initial value for c is not important, the
algorithm converges to the same solution even if we start
with an initial value far from the true one. This is due to
the uniform convex nature of the objective functional in the
two-subdomain-case. In the general case, the functional is only
locally convex. All the examples shown are processed using
the augmented Lagrangian Algorithm. For some experiments
using the projection Lagrangian method, we refer to [36].

A. One Level Set Function

Example 1. We start with an example where one level
set function is used to detect two different subdomains. We
want to test our method on a really challenging image with
scattered data, i.e. a satellite image of Europe showing clusters
of light. At every point in the image, the level set function must
converge to ±1. Which point the level set function should
equal 1 and which point it should equal −1 is influenced by
the regularization parameter β. A big β gives a “connected”
result, while a small β gives a less “connected” result, see
Fig. 2. No matter what kind of value we choose for β, the
algorithms are able to get the level set function to converge to
±1. In Fig. 2 we show results using our method, and in Fig. 3
we show results using the CV method on the same image. For
the CV model, the initial zero level of φ is a circle with center

(a) (b) (c)

Fig. 2. Segmentation of a satellite image using our proposed augmented
Lagrangian method. (a) The input image. (b) Processed image with β =
7 · 10−4. (c) Processed image with β = 3 · 10−4. Note that the topology of
the resulting image depends on the choice of the regularization parameter.

(a) (b) (c)

Fig. 3. Segmentation of the satellite image using the CV method. (a) The
same input image as in Fig. 2(a).(b) Processed image without reinitialization.
(c) Processed image with reinitialization every tenth iteration. Whether or not
a reinitialization is done affects the topology of the resulting image.

in the middle of the image, and diameter equal to the height of
the image. Both methods are terminated after 300 iterations on
φ. By choosing the β value properly, both methods are able to
produce visually pleasing results. It was observed that the CV
method produces different images with different initial values
for the level set function. It is also true that the reinitialization
process and how often doing the reinitialization for the level
set functions alter the final results of the processed image.
Using our method, we only need to choose the regularization
parameter. For a comparison with other results, we refer the
reader to [2], [10], [13], [23].

Example 2. In this example, we introduce a technique
which can be used for accelerating the convergence of our
algorithms. In some sense this is related to what was done
in [14]. At convergence, the level set function should equal
±1. After a few gradient iterations, the level set functions
could already have the correct sign, but it might take many
iterations to get φ exactly to ±1. This is a common behavior
of the steepest descent method, due to its slow convergence
rate. To accelerate the convergence, we start the algorithm,
and perform a few iterations. Then we take the sign of the
obtained φ function as an initial value and start the algorithm
again. In each iteration, the step size ∆t is chosen using a line
search algorithm. We show the results for a specific image in
Fig. 4. Again we observe that the topological properties of
the segmented image are related to the chosen value of β. We
compare the result with the CV-method. See also the results
in [13], [22].

As observed in this example, the number of iterations is
dramatically decreased when the modified algorithm is used. In
the case of two phase segmentation, the functional L(φ, c, λ)
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(a) (b)

(c) (d)

Fig. 4. An image of a galaxy is processed using the modified (quicker)
version of the augmented Lagrangian algorithm. (a) The original image u0.
(b) A piecewise constant approximation to u0 after 20 iterations with β =
1 · 10−6 . (c) Another piecewise constant approximation with β = 3 · 10−4 .
We compare with the result using CV in (d), using 300 iterations.

is convex w.r.t. c and φ. For multiple phases, L(φ, c,λ) is
only locally convex w.r.t. c and φ. The above technique can
accelerate the convergence in the two-phase case. However,
more careful tests are needed to draw some solid conclusions
concerning the class of problems where the speedup-technique
is applicable. Another and better way to accelerate the con-
vergence of the algorithms would be using a Newton-type of
iteration for φ.

From the two numerical tests above, we see that our method
is capable of computing segmentations of the same quality as
the CV method. Both our method and CV require the user
to supply an estimation of how much regularization to be
performed. This is related to the noise level and to which
kind of objects to be detected. In the above tests, we have set
the parameter ε controlling the approximation of the δ and H
functions to be 1 as in [2, p.272]. In addition, ν controlling
the area in (9) is set to 0. We have kept µ in our model as
a constant, µ = 0.1. From Fig. 3 (b) and (c) we see that
whether or not the reinitialization is performed can influence
the resulting segmentation. Using our method, this is not an
issue.

In the next section we will show a few numerical results
using two functions φ1 and φ2 for detecting upto four different
regions.

B. Two Level Set Functions

Example 3. Using our method, we can start with con-
tinuous functions for the level set functions. In fact, in all but
the last numerical experiments shown here, we initialize the
level set functions as zero functions. At convergence, the level

(a) (b)

(c) (d)

Fig. 5. Two level set functions are utilized for detecting four regions having
distinct intensities. The values for the parameters are µ = 1 · 10−4 and
β = 1 · 10−4.

set functions are discontinuous functions having values ±1.
In some sense, we are not moving curves. For a given initial
value for the level set functions, our algorithms determines a
correction direction, and moves the level set function up or
down according to this. This makes it easy to capture objects
with arbitrary topology. This has also been observed in [8].
For other level set methods there is a need to start with curves
inside the object, or like in [2], use approximations to H− and
δ−functions having global support to be able to identify inside
”holes”. Alternatively, topological derivatives can be used in
order to identify complex geometries in level set methods [8],
[37].

To demonstrate the capability of handling complicated ge-
ometry, we have tested the algorithms using two level set func-
tions on the image depicted in the upper left corner of Fig. 5.
The same image has been segmented using other methods in
[22], [23] giving similar results. The image contains convex
and concave shapes and a ”hole”. We have imposed the image
with noise, SNR ≈ 7.5. Our method is able find all the objects
with rather good accuracy even under the moderate amount of
noise. The sharp corners, concave shapes and ”hole” presents
no problems.

Example 4. As was pointed out in §III, and illustrated in
Fig. 1, our regularization functional measures the length of
edges accurately. In some applications it might be important
that all edges are treated in a similar fashion, independently
of other properties of the image, like the intensity-value. We
will in this example illustrate a case where our regularizer
treats all edges accurately, while the regularizer of CV does
not. To do so, we chose the image u0 so that the difference
between the two regularizers is clearly emphasized. An image
containing long and thin (only 1 pixel wide) regions, Ω1 and
Ω2, having two distinct intensity values c1 and c2 in addition
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to the background Ω3 with intensity value c3 are used for this
purpose. We choose c1 ≈ c2, such that a misclassification of
pixels between Ω1 and Ω2 will not count much in the fidelity
terms of the functionals (23) and (9). Thus the regularization
will have a great impact for the minimization problem. In this
example, the exact intensity values c are assumed to be known
prior to the segmentation. With no noise and no regularizer,
both methods gave a perfect result. However, this is not the
case if noise is present, and regularization is needed. The
image u0 in Fig. 6 (b) is segmented using both the CV method
(c) and our method (d). As can be observed in Fig. 6(d) and
(c), our regularizer treats all edges in a similar manner, while
the regularizer of CV does not. The boundaries ∂Ω1 ∩ ∂Ω2

and ∂Ω2 \ ∂Ω1 ∩ ∂Ω2 (measured once) in Fig. 6 (c) are more
oscillatory than the boundary ∂Ω1 \ ∂Ω1 ∩ ∂Ω2 (measured
twice). We emphasize that in most cases there will be little or
no difference between the two regularizers. We are reporting
a peculiar example in (a)-(d). As seen in Fig. 6 (e) and (f),
where the intensity values are the same as in Fig. 6 (c) and
(d), the areas covered by Ω1, Ω2, and Ω3 are the same, but the
length of each phase is not the same. Both models manage to
do a perfect segmentation in this case. In the example above,
i.e. Fig. 6 (c) and (d), we maximized the difference between
our model and the CV model by carefully choosing u0. If the
intensity values c1 and c2 are not as close as in this example,
it is possible to find a β such that the regularizer in CV will
produce the correct result.

Example 5. To conclude the numerical section we process
one slice of a medical MR-image. We have picked out an
image from the Brainweb database. This is an online database
from where synthetic MR-images of the human brain can be
obtained, [38]. The input image u0 in Fig. 7 contains 25%
noise and is 20% inhomogeneous. The image is difficult to
segment due to the fact that the interfaces between different
tissues are topologically complicated and the intensity values
are not homogeneous inside each phase. Another difficulty
is the present noise, SNR ≈ 15. When the noise level is
low, both our method and the isodata-method [35] are able to
produce rather good segmented images. The isodata-method
may misclassify a number of points. However, the difference
with our method is not so big. When the noise level is high,
the isodata-method produces highly oscillating results, but our
method can produce much better images. In order to accelerate
the convergence for our method, we use the isodata-method
[35] to construct initial guesses {ci}4i=1 and {φi}2i=1 for our
method. By doing so, we can segment complex noisy images
in a quick and reliable way.

The numerical result is shown in Fig. 7. In (b), we show
the result of the isodata segmentation of u0. We can here
observe that the main structures are preserved, but also highly
oscillating patterns occur. We use the results from the isodata-
method to construct initial values for φ1 and φ2, run our
algorithm with these initial values, and end up with the
image depicted in Fig. 7 (c). Observe that the main structures
are still very well preserved, but most of the (unwanted)
highly oscillating patterns are removed. By initializing the
algorithm in this way, we both accelerate the convergence of
our algorithm, and in addition more or less avoid the problem

(a) (b)

(c) (d)

(e) (f)

Fig. 6. With some special images containing long, thin (1 pixel wide)
structures our regularizer is better at handling edges than the regularizer used
in the CV model. A little amount of noise is added to the image (a) to produce
(b). This image is segmented using both CV and our method. In (c) we show
the result of CV and in (d) we show the result of our method. The image in
(e) is very well segmented using CV (f).

of local minimizers. In this example, we used the parameters
β = 5 · 10−3, µ = 5, and 1000 iterations.

VI. CONCLUSIONS

In this work and also in [23], we have proposed some
piecewise constant level set methods for capturing interfaces.
These methods are related both to the phase-field methods and
the level set methods. Numerical experiments indicate that
these methods are able to trace interfaces with complicated
geometries and sharp corners. The level set functions are
discontinuous at convergence, but the minimization functionals
are smooth and at least locally convex. In this work, we have
only tested the methods for image segmentation, and we have
used simple gradient methods for the iterative algorithms.
Due to the fact that the functionals are smooth and the
method is truly variational, it is possible to design fast iterative
algorithms for solving the minimization problems, i.e. by
using Newton type of iterations instead of the simple gradient
methods. The numerical results indicate that our methods
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(a)

(b)

(c)

Fig. 7. In this example, the image (a) is first segmented using the isodata
method (b). Then the result is further processed using our method, and the
final result is shown in (c).

give as good results as methods using continuous level set
functions. The methods proposed in this article and in [23] are
not superior, but are interesting alternatives to other methods
used for interface problems. Our methods are not moving the
interfaces during the iterative procedure, and thus have some
advantages in treating geometries, for example in situations
where inside ”holes” need to be identified. Using our approach,
we have removed the reinitialization procedure sometimes
needed in traditional level set methods. We have proposed
and demonstrated the validity of an alternative approach for
interface identification, in particular for image segmentation.
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