
The classical inverse ECG problem

Is it possible to compute the electrical potential at the

surface of the heart from body surface measurements?

T
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H
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Why?
Improve traditional ECG recordings

Better qualitative and quantitative understanding of

the heart

Detect diseases and malfunctions

...
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The Bidomain model
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�Cm�v�t + �Iion(v) = r � (M irv) +r � (M irue) in Hr � (M irv) +r � ((M i +M e)rue) = 0 in Hr �Mru = 0 in Tv = ui � ue: membrane potentialIion: ionic currentM i;M e: conductivity tensors 3/48

Outside the heart
In T (torso): r � (Mru) = 0 in T;(Mru) � n = 0 along �T:

(Not a closed problem!)
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ECG (electrocardiogram)
ECG recording! d = d(t) along � � �T

Focus on one time instance t = t�, d = d(t�)

Briefly about the time dependent problem
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Outside the heart + ECG
In T (torso): r � (Mru) = 0 in T;(Mru) � n = 0 along �T;+ ECG recording of u along � � �T:u along �H?
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The Challenge, cont.
Operator R(g) = u(g)j�, where u = u(g) solvesr � (Mru) = 0 in T;(Mru) � n = 0 along �T;u = g along �H:
Find g such that R(g) = d;

where d is the data from the ECG recording
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Properties
Solve R(g) = d (1)

for g.R is a linear operator
(1) is ill-posed

If d =2 Range(R) ming kR(g)� dk2:
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This lecture
Fourier analysis on the unit square, stationary

The general case, stationary

The time dependent problem

Numerical results
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Fourier analysis
Unit square

∆u = 0

y

x

u=g?

= 0 = 0u
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Fourier analysis
Unit square

y

x

Γ

Tδ

Hδ
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The direct problem
Find u = u(g) satisfying�u = 0 in T;ru � n = 0 along �T;u = g along �H:
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The direct problem, cont.
Separation of variables:Nk(x; y) = 
os(k�x) 
osh(k�y); k = 0; 1; : : :

satisfies �u = 0 in T;ru � n = 0 along �T:
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The direct problem, cont.
Linearity:

u(x; y) = 1Xk=0 
k 
os(k�x) 
osh(k�y);
where f
kg are constants, satisfies�u = 0 in T;ru � n = 0 along �T:
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The direct problem, cont.
Fourier cosine series of g:

g(x) = 1Xk=0 pk 
os(k�x)

Solution formula for the direct problem

u(g)(x; y) = u(x; y) = 1Xk=0 pk
osh(k�) 
os(k�x) 
osh(k�y):
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The direct problem, cont.R: heart surface! body surface

R(g) = R 1Xk=0 pk 
os(k�x)
! = u(g)(x; 0)

= 1Xk=0 pk
osh(k�) 
os(k�x)
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The direct problem, cont.
Fourier coeff.: pk ! pk
osh(k�)

Large k j pk
osh(k�) j � jpkj

strong damping effectR has a strong smoothing effect
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The direct problem, cont.
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The inverse problemR: heart surface! body surface

For a given ECG recording d, find g such thatR(g) = d

Recall that

R 1Xk=0 pk 
os(k�x)
! = 1Xk=0 pk
osh(k�) 
os(k�x)
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The inverse problem, cont
Consequently

R (
os(k�x)) = 1
osh(k�) 
os(k�x)

Eigenvalues

�k = 1
osh(k�) k = 1; 2; : : :

Zero is a cluster point for f�kgR not continuously invertible, R�1 not “well-behaved”
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The inverse problem, cont.
Fourier expansion

d(x) = 1Xk=0 dk 
os(k�x)

Can Easy solve R(g) = d for g =P1k=0 pk 
os(k�x):

R(g) = 1Xk=0 pk
osh(k�) 
os(k�x) = 1Xk=0 dk 
os(k�x);

yields pk = dk 
osh(k�) for k = 0; 1; : : : :
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The inverse problem, cont.
Consequently

g(x) = R�1(d(x)) = R�1 1Xk=0 dk 
os(k�x)
!

= 1Xk=0 dk 
osh(k�) 
os(k�x)
Fourier coeff.: dk ! dk 
osh(k�)
Even for small k, 
osh(k�) is large, e.g.
osh(5�) � 3:32 � 106
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Example 1
Exact data, d(x) = 
osh�1(�) 
os(�x)

Error-prone data, dÆ(x) = d(x) + Æ 
os(5�x)

Then R�1(dÆ)�R�1(d) � 3:32 � 106 Æ 
os(5�x)
For example, kdÆ � dkL1 = O(10�3) implies thatkR�1(dÆ)�R�1(d)kL1 = O(103)
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Regularization
Output least squares, minimizeJ(g) = kR(g)� dk2L2(�)

Tikhonov regularizationJ�(g) = kR(g)� dk2L2(�) + �kgk2L2(�H)

Second order Tikhonov regularizationJ2;�(g) = kR(g)� dk2L2(�) + �kgxxk2L2(�H)

ApproximationsR�1� � R�1 and R�12;� � R�1

(derived from rJ� = 0 and rJ2;� = 0) 24/48



Regularization, cont.R: heart surface! body surface

No regularization

R�1 1Xk=0 dk 
os(k�x)
! = 1Xk=0 dk 
osh(k�) 
os(k�x)

Tikhonov

R�1�  1Xk=0 dk 
os(k�x)
! = 1Xk=0 dk 
osh(k�)1 + � 
osh2(k�) 
os(k�x)

Second order Tikhonov

R�12;�  1Xk=0 dk 
os(k�x)
! = 1Xk=0 dk 
osh(k�)1 + �(k�)4 
osh2(k�) 
os(k�x)25/48

Regularization, cont.
For the low frequency components of the data d, the
action of R�1, R�1� and R�12;� is almost identical,
provided that � is small
The high frequency components of d are damped
efficiently by R�1� and R�12;�
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Example 1, revisited
Exact data, d(x) = 
osh�1(�) 
os(�x)

Error-prone data, dÆ(x) = d(x) + Æ 
os(5�x)

Tikhonov, errorE(�; Æ) = kR�1(d)�R�1� (dÆ)k2L2(�H)
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Example 1, revisited - cont.L2 error on the heart surface
No regularization e(Æ) � 2:35 � 106Æ

Tikhonov (optimal regularization)E(Æ) � 4:05 � 10�5Æ

Second order Tikhonov (optimal regularization)E2(Æ) � 6:48 � 10�8Æ;
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Example 1, revisited - cont.
Second order works better than plain Tikhonov

regularization

In general, difficult to find an optimal value for the

regularization parameter �
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The general caseR: heart surface! (part of the) body surface

Complex geometry

Non-constant conductivity M
Fourier analysis impossible
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∂H

H
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The general case, cont.
Operator R(g) = u(g)j�, where u = u(g) solvesr � (Mru) = 0 in T;(Mru) � n = 0 along �T;u = g along �H;
and � � �H.
Find g such that R(g) = d:
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LinearityR is a linear operator:R(a1g1 + a2g2) = a1R(g1) + a2R(g2);

for any scalars a1 and a2 and functions g1 and g2 defined
on �H.
We will use this fact to discretize our inverse problem
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Discretization
Linearly independent functionsg1; : : : ; gn : �H ! IR;

and Vn = spanfg1; : : : ; gng;Rn = RjVn
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Discretization, cont.g 2 Vn: g = nXi=1 pigi;
where fpig are scalars.
Consequently, ifri = Rn(gi) for i = 1; : : : ; n;

then the linearity of Rn implies that
Rn(g) = nXi=1 piri:
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Discretization, cont.
Original problem Rn(g) = dd =2 Range(Rn) ming2Vn kRn(g)� dk2L2(�)

Tikhonovming2Vn nkRn(g)� dk2L2(�) + �kgk2L2(�H)o
35/48

Discretization, cont.g =Pni=1 pigi, thusJ�(g) = J�(p1; : : : ; pn)= kRn(g)� dk2L2(�) + �kgk2L2(�H)= k nXi=1 piri � dk2L2(�) + �k nXi=1 pigik2L2(�H);

where ri = Rn(gi) for i = 1; : : : ; n;
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Discretization, cont.
The condition �J��pi = 0 for i = 1; : : : ; n;

gives the n� n systemnXj=1
�Z� rjri dx+ �Z�H gjgi dx� pj = Z� dri dx for i = 1; : : : ; n:
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Discretization, cont.
Which may be written on the formB�p = 
;
where

B� = [b�;ij ℄ 2 Rn�n; b�;ij = Z� rjri dx+ �Z�H gjgi dxp = (p1; : : : ; pn)T 2 Rn;
 = �Z� dr1 dx; : : : ;Z� drn dx�T 2 Rn;
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An algorithm
a) Pick n linearly independent functionsg1; : : : ; gn : �H ! IR;

defined at the surface �H of the heart H

b) For i = 1; : : : ; n, set g = gi in the direct problem and
solve it for u = u(gi)

c) Compute ri = u(gi)j�; i = 1; : : : ; n
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An algorithm, cont.
d) Compute the matrix B�

e) Compute the right hand side 


f) Solve the linear system B�p = 
 for p

g) Compute the potential g at the heart surface by

g = nXi=1 pigi

For each new observation d, only steps e)-g) have to be
carried out. (Important for the time dependent problem)
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Example 2

10 cm

Tikhonov, � = 10�3
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Example 2, cont.
Second order Tikhonov, � = 10�8
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Example 2, cont.
Second order Tikhonov, 1% noise, � = 1
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The time dependent problem
Time instances t0; : : : ; tM with datad0; : : : ; dM 2 L2(�)

defined at the body surface

Compute the corresponding potentials at the heart

surface g0; : : : ; gM

Brute force: SolveB�p� = 
� for � = 0; : : : ;M
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The time dependent problem, cont.
Ensure that the change in the epicardial potential is

small from one time step to the next

ming�2Vn hkRn(g� )� d�k2L2(�) + �kg� � g��1k2L2(�H)i

for � = 1; : : : ;M

Hybrid scheme

ming�2Vn hkRn(g� )� d�k2L2(�) + �kg� � g��1k2L2(�H) + �k��Hg�k2L2(�H)i

(��Hg� = 
url�H ~
url�Hg� - Laplace-Beltrami
operator)

More advanced schemes (F. Greensite) 45/48

Example 3

ming�2Vn hkRn(g� )� d�k2L2(�) + �kg� � g��1k2L2(�H)i� = 0:01
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Example 3, cont.

ming�2Vn hkRn(g� )� d�k2L2(�) + �kg� � g��1k2L2(�H) + �k��Hg�k2L2(�H)i

� = 0:01 and � = 1
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Summary
Aim: To compute the potential at the heart surface from

body surface measurements (ECGs)

Leads to a linear problem R(g) = d

Ill-posed

From a mathematical point of view, fairly simple

Second order Tikhonov regularization works well

Main practical problems:

Noisy ECG data

High quality geometrical models of the body

required
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