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Lectures on Linear Inverse Problems

Per Christian Hansen

Technical University of Denmark

1. Introduction to ill-posed problems.

2. More insight into their behavior and treatment.

3. Discrete ill-posed problems.

4. Regularization methods for discrete ill-posed problems.

5. Parameter-choice methods.

6. Iterative regularization methods.

7. Large-scale problems.
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Contents of This Lecture

The three IPs:

1. Inverse Problems.

(a) Motivation.

(b) Characterization.

2. Ill-Conditioned Problems.

(a) A small example.

(b) Stabilization.

3. Ill-Posed Problems.

(a) Definition and properties.

(b) Examples.

What to do with these IPs?

Geilo Winter School – Inverse Problems – 1. Introduction 3

Motivation: Why Inverse Problems?

A large-scale example, coming from a collaboration

with the University of Naples.

From measurements of the magnetic field above Vesuvius,

determine the activity inside the volcano.

Measurements Reconstruction

on the surface inside the volcano
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Another Example: the Hubble Space Telescope

For several years, the HST produced blurred images.
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Inverse Problems

. . . typically arise when one wants to compute information about

some “interior” properties using “exterior” measurements.
∫

Ω

input × system dΩ = output

Image restoration

scenery → lens → image

Tomography

X-ray source → object → damping

Seismology

seismic wave → layers → reflections
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Computational Issues
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• Standard numerical methods produce useless results.

• Specialized methods can produce “reasonable” results.
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The Mechanisms of Ill-Conditioned Problems

Consider a linear system with coefficient matrix and right-hand side

A =





0.16 0.10

0.17 0.11

2.02 1.29



 , b =





0.27

0.25

3.33



 = A

(

1

1

)

+





0.01

−0.03

0.02



 .

There is no vector x such that Ax = b.

The least squares solution, which solves the problem

min
x

‖Ax − b‖2,

is given by

xLSQ =

(

7.01

−8.40

)

⇒ ‖AxLSQ − b‖2 = 0.022 .

Far from exact solution ( 1 , 1 )T yet the residual is small.
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Other Solutions with Small Residual

Two other “solutions” with a small residual are

x
(1)
B =

(

1.65

0

)

⇒ ‖Ax
(1)
B − b‖2 = 0.031

x
(2)
B =

(

0

2.58

)

⇒ ‖Ax
(1)
B − b‖2 = 0.036 .

All the “solutions” xLSQ, x
(1)
B and x

(2)
B have small residuals, yet

they are far from the exact solution!

• The matrix A is ill conditioned.

• Small perturbations of the data (here: b) can lead to

large perturbations of the solution.

• A small residual does not imply a good solution.

(All this is well known stuff from matrix computations.)
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Stabilization!

It turns out that we can modify the problem such that the solution

is more stable, i.e., less sensitive to perturbations.

Example: enforce an upper bound on the solution norm ‖x‖2:

min
x

‖Ax − b‖2 subject to ‖x‖2 ≤ α .

The solution xα depends in a nonlinear way on α:

x0.1 =

(

0.08

0.05

)

, x1 =

(

0.84

0.54

)

x1.385 =

(

1.17

0.74

)

, x10 =

(

6.51

−7.60

)

.

By supplying the correct additional information we can compute

a good approximate solution.
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Inverse Problems → Ill-Conditioned Problems

Whenever we solve an inverse problem on a computer, we face

difficulties because the computational problems are ill conditioned.

The purpose of my lectures are:

1. To explain why ill-conditioned computations always arise when

solving inverse problems.

2. To explain the fundamental “mechanisms” underlying the ill

conditioning.

3. To explain how we can modify the problem in order to stabilize

the solution.

4. To show how this can be done efficiently on a computer.

Regularization methods is at the heart of all this.
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Inverse Problems are Ill-Posed Problems

Hadamard’s definition of a well-posed problem (early 20th century):

1. The problem must have a solution,

2. the solution must be unique, and

3. it must depend continuously on data and parameters.

If the problem violates any of these requirements, it is ill posed.

Condition 2 can be “fixed” by additional requirements to the

solution, e.g., that of minimum norm.

Condition 3 is harder to “fix” because it implies that

• arbitrarily small perturbations of data and parameters can

produce arbitrarily large perturbations of the solution.
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Fredholm Integral Equations of the First Kind

Our generic inverse problem:
∫ 1

0

K(s, t) f(t) dt = g(s), 0 ≤ s ≤ 1 .

Here, the kernel K(s, t) and the right-hand side g(s) are known

functions, while f(t) is the unknown function.

In multiple dimensions, this equation takes the form
∫

Ωt

K(s, t) f(t) dt = g(s), s ∈ Ωs .

An important special case: deconvolution

∫ 1

0

h(s − t) f(t) dt = g(s), 0 ≤ s ≤ 1

(and similarly in more dimensions).
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The Riemann-Lebesgue Lemma

Consider the function

f(t) = sin(2πp t) , p = 1, 2, . . .

then for p → ∞ and “arbitrary” K we have

g(s) =

∫ 1

0

K(s, t) f(t) dt → 0 .

Smoothing: high frequencies are damped in the mapping f 7→ g.

Hence, the mapping from g to f must amplify the high frequencies.

Therefore we can expect difficulties when trying to reconstruct

f from noisy data g.
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Illustration of the Riemann-Lebesgue Lemma

Gravity problem with f(t) = sin(2πp t), p = 1, 2, 4, and 8.
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A Problem with no Solution

Ursell (1974) presented the following innocently-looking problem:

∫ 1

0

1

s + t + 1
f(t) dt = 1, 0 ≤ s ≤ 1.

This problem has no square integrable solution!
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Investigation of the Ursell Problem

The kernel has a set of orthonormal eigenfunctions φi such that
∫ 1

0

1

s + t + 1
φi(t) dt = λi φi(s), i = 1, 2, . . .

Expand the right-hand side g(s) = 1 in terms of the eigenfunctions:

gk(s) =
k

∑

i=1

(φi, g) φi(s); ‖g − gk‖2 → 0 for k → ∞.

Now consider the expansion

fk(t) =

k
∑

i=1

(φi, g)

λi

φi(t).

Each fk is obviously a solution to
∫ 1

0
f(t)

s+t+1 dt = gk(s); but

‖fk‖2 → ∞ for k → ∞.
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Ursell Problem – Numerical Results
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Why do We Care?

Why bother about these (strange) issues?

• Ill-posed problems model a variety of real applications:

– Medical imaging (brain scanning, etc.)

– Geophysical prospecting (search for oil, land-mines, etc.)

– Image deblurring (astronomy, CSIa, etc.)

– Deconvolution of instrument’s response.

• We can only hope to compute useful solutions to these

problems if we fully understand their inherent difficulties . . .

• and how these difficulties carry over to the discretized problems

involved in a computer solution,

• and how to deal with them in a satisfactory way.
aCrime Scene Investigation.
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Some Important Questions

• How to discretize the inverse problem; here, the integral

equation?

• Why is the matrix in the discretized problem always so ill

conditioned?

• Why can we still compute an approximate solution?

• How can we compute it stably and efficiently?

• Is additional information available?

• How can we incorporate it in the solution scheme?

• How should we implement the numerical scheme?

• How do we solve large-scale problems?



Geilo Winter School – Ill-Posed Problems – 2. More Insight 1

Contents of The Second Lecture

1. Model problems

(a) Deconvolution

(b) Gravity surveying

2. The singular value expansion (SVE)

(a) Formulation

(b) The smoothing effect

(c) The discrete Picard condition

3. Discretization

(a) Quadrature methods

(b) Galerkin methods
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Model Problem: Deconvolution

Continuous form of (de)convolution:
∫ 1

0

h(s− t) f(t) dt = g(s) , 0 ≤ s ≤ 1 .

Discrete periodic signals of length N :

DFT(g) = DFT(f) � DFT(h)

f = IDFT (DFT(g) � DFT(h))

where

� and � = elementwise multiplication/division

and the discrete Fourier transform DFT(f) is defined by

[DFT(f)]k =
1

N

N−1∑

j=0

fj e
−ı̂ 2πjk/N , k = 0, 1, . . . , N − 1 .
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Example from Signal Processing

Noisy discrete signal g̃ = g + e, where e is white noise:

DFT(g̃) = DFT(g) + w,

where all elements in w = DFT(e) have the same probability.

The “naive” expression for the solution f̃ becomes

DFT(f̃) = DFT(g̃) � DFT(h)

= DFT(g) � DFT(h) + w � DFT(h)

= DFT(f) + w � DFT(h) .

The last term represent high-frequent noise!
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Power Spectra
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Model Problem: Gravity Surveying

• Unknown mass density distribution f(t) at depth d below

surface, from 0 to 1 on t axis.

• Measurements of vertical component of gravitational field g(s)

at surface, from 0 to b1 on the s axis.
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Setting Up the Integral Equation

The value of g(s) due to the part dt on the t axis

dg =
sin θ

r2
f(t) dt ,

where r =
√
d2 + (s− t)2. Using that sin θ = d/r, we get

sin θ

r2
f(t) dt =

d

(d2 + (s− t)2)3/2
f(t) dt .

The total value of g(s) for a ≤ s ≤ b is therefore

g(s) =

∫ 1

0

d

(d2 + (s− t)2)3/2
f(t) dt .

This is the forward problem.
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Our Integral Equation

Fredholm integral equation of the first kind:

∫ 1

0

d

(d2 + (s− t)2)3/2
f(t) dt = g(s) , a ≤ s ≤ b .

The kernel K, which represents the model, is

K(s, t) = h(s− t) =
d

(d2 + (s− t)2)3/2
,

and the right-hand side g is what we are able to measure.

From K and g we want to compute f , i.e., an inverse problem.
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Numerical Examples
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Observations:

• The signal/“data” g(s) is a smoothed version of the source f(t).

• The deeper the source, the weaker the signal.

• The discontinuity in f(t) is not visible in g(s).
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The Singular Value Expansion (SVE)

For any square integrable kernel K holds

K(s, t) =

∞∑

i=1

µi ui(s) vi(t)

The “fundamental relation”
∫ 1

0

K(s, t) vi(t) dt = µi ui(s) , i = 1, 2, . . .

and the expression for the solution

f(t) =

∞∑

i=1

(ui, g)

µi
vi(t) .
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The Smoothing Effect

The “smoother” the kernel K, the faster the µi decay to zero:

• If the derivatives of order 0, . . . , q exist and are continuous,

then µi is approximately O(i−q−1/2).

The smaller the µi, the more oscillations (or zero-crossings) in the

singular functions ui and vi.
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Since vi(t) → µi ui(s), higher frequencies are damped more than

lower frequencies (smoothing) in the forward problem.
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The Picard Condition

In order that there exists a square integrable solution f to the

integral equation, the right-hand side g must satisfy

∞∑

i=1

(
(ui, g)

µi

)2

<∞ .

Equivalent condition: g ∈ range(K).

Main difficulty: a noisy g does not satisfy the PC!
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Illustration of the Picard Condition
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The violation of the Picard condition is the simple explanation of

the instability of linear inverse problems in the form of first-kind

Fredholm integral equations.

SVE analysis + Picard plot → insight → remedy → algorithms.
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Example of SVE (Degenerate)

We can occasionally calculate the SVE analytically. Example
∫ 1

−1

(s+ 2t) f(t) dt = g(s), −1 ≤ s ≤ 1.

For this kernel K(s, t) = s+ 2r we have

µ1 = µ2 = 2/
√

3, µ3 = µ4 = . . . = 0.

u1(s) = 1/
√

2, u2(s) =
√

3/2 s

v1(t) =
√

3/2 t, v2(t) = 1/
√

2.

A solution exists only if

g ∈ range(K) = span{u1, u2},

i.e., if g is of the form

g(s) = c1 + c2 s.
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Another Example of SVE

Consider the equation
∫ 1

0
K(s, t) f(t) dt = g(s), 0 ≤ s ≤ 1 with

K(s, t) =





s(t− 1), s < t

t(s− 1), s ≥ t.

An alternative expression for the kernel:

K(s, t) = − 2

π2

∞∑

i=1

sin(i π s) sin(i π t)

i2
.

From this we get, for i = 1, 2, . . .

µi =
1

(iπ)2
, ui(s) =

√
2 sin(iπs), vi(t) = −

√
2 sin(iπt).
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Analytic SVEs are Rare

A few cases where analytic SVEs are available, e.g., the Radon

transform.

But in most applications we must use numerical methods for

analysis and solution of the integral equation.

The rest of these lectures are devoted to numerical methods!

Our analysis has given us an understanding to the difficulties we

are facing – and they will manifest themselves again in any

numerical approach we’re using to solve the integral equation.
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Discretization Methods

Must replace the problem of computing the unknown function f

with a discrete problem that we can solve on a computer.

Linear integral equation ⇒ system of linear algebraic equations.

Quadrature Methods.

Compute approximations f̃j = f̃(tj) to the solution f

at the abscissas t1, t2, . . . , tn.

Expansions Methods.

Compute an approximation of the form

f̃(t) =

n∑

j=1

αj φj(t),

where φ1(t), . . . , φn(t) are expansion/basis functions.
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Quadrature Discretization

Recall the quadrature rule

∫ 1

0

ϕ(t) dt =

n∑

j=1

wj ϕ(tj) +Rn ,

where Rn is the quadrature error, and

wj = weights , tj = abscissas , j = 1, . . . , n .

Now apply this rule formally to the integral,

Ψ(s) =

∫ 1

0

K(s, t) f(t) dt =

n∑

j=1

wj K(s, tj) f(tj) +Rn(s) .
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Quadrature Discretization + Collocation

Now enforce the collocation requirement that Ψ equals

the right-hand side g at n selected points:

Ψ(si) = g(si) , i = 1, . . . , n ,

where g(si) are sampled/measured values of the function g.

Must neglect the error term Rn(s), and thus replace f(tj) by f̃j :

n∑

j=1

wj K(si, tj) f̃j = g(si), i = 1, . . . , n .

Could use m > n collocation points → overdetermined system.
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The Discrete Problem in Matrix Form

Write out the last equation to obtain



w1K(s1, t1) w2K(s1, t2) · · · wnK(s1, tn)

w1K(s2, t1) w2K(s2, t2) · · · wnK(s2, tn)
...

...
...

w1K(sn, t1) w2K(sn, t2) · · · wnK(sn, tn)







f̃1

f̃2

...

f̃n


 =




g(s1)

g(s2)
...

g(sn)




or simply

Ax = b

where A is n× n with

aij = wj K(si, tj)

xj = f̃(tj)

bi = g(si)





i, j = 1, . . . , n .
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Discretization: the Galerkin Method

Select two sets of functions φi and ψj , and write

f(t) = f̃(t) +Rf (t), f̃(t) ∈ span{φ1, . . . , φn}

g(s) = g̃(s) +Rg(s), g̃(s) ∈ span{ψ1, . . . , ψn} .
Write f̃ as the expansion

f̃(t) =

n∑

j=1

αj φj(t) .

and determine the coefficients αj such that

∫ 1

0

K(s, t) f̃(t) dt = g̃(s) .

This ensures that the residual Rg(s) = g(s) −
∫ 1

0
K(s, t)f̃(t)dt

is orthogonal to span{ψ1, . . . , ψn}.
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Computation of the Galerkin Solution

The orthogonality is enforced by requiring that, for i = 1, . . . , n,

(ψi , Rg) = 0 ⇔

(ψi , g) =

(
ψi ,

∫ 1

0

K(s, t) f̃(t) dt

)
.

Inserting the expansion for f̃ , we obtain the n× n system

Ax = b

with xi = αi and

aij =

∫ 1

0

∫ 1

0

ψi(s)K(s, t)φj(t) ds dt

bi =

∫ 1

0

ψi(s) g(s) ds .

The integrals are often evaluated numerically.
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Contents of The Fifth Lecture

1. Perspectives on regularization

2. The discrepancy principle

3. Generalized cross validation (GCV)

4. The L-curve criterion

5. A comparison of the methods
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Summary of Tikhonov Regularization

Focus on Tikhonov regularization; the ideas carry over to many

other methods.

Recall that the Tikhonov solution xλ solves the problem

min
{

‖Ax − b‖2
2 + λ2‖L x ‖2

2

}

,

and that it is formally given by

xλ = (AT A + λ2LT L)−1AT b = A
#
λ b,

where A
#
λ = (AT A + λ2LT L)−1AT is a “regularized inverse.”
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Perspectives on Regularization

Problem formulation: balance fit (residual) and size of solution.

xλ = arg min
{

‖Ax − b‖2
2 + λ2‖L x‖2

2

}

Cannot be used for choosing λ.

Backward error: balance regularization and perturbation errors.

xexact − xλ = xexact − A
#
λ (bexact + e)

=
(

I − A
#
λ A

)

xexact − A
#
λ e .

Forward/prediction error: balance residual and perturbation.

bexact − Axλ = A (xexact − xλ)

=
(

I − AA
#
λ

)

bexact − AA
#
λ e .
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Classical and Pragmatic Parameter-Choice

Assume we are given the problem Ax = b with b = bexact + e, and

that we have a strategy for choosing the regularization parameter λ

as a function of the “noise level” ‖e‖2.

Then classical parameter-choice analysis is concerned with the

convergence rates of

xλ → xexact as ‖e‖2 → 0 and λ → 0 .

The typical situation in practice:

• The norm ‖e‖2 is not known, and

• the errors are fixed (not practical to repeat the measurements).

The pragmatic approach to choosing the regularization parameter

is based on the forward/prediction error, or the backward error.
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The Discrepancy Principle

For a continuous parameter λ: solve

‖Axλ − b‖2 = δe , where ‖e‖2 ≤ δe .

If the noise is white then E(‖e‖2
2) = mσ2

0 .

For a discrete parameter k: choose the smallest k such that

‖Axk − b‖2 ≤ δe .

Can show that the convergence rate for the discrepancy principle is

‖xλ − xexact‖ = O
(

‖e‖1/2
)

(not optimal).

Optimal convergence is achieved by the rule

2λ6 bT (AAT + λ2Im)−3b = γ δ2
e , γ ≥ 2.
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The Compensated Discrepancy Principle

An estimate of ‖e‖2
2 may be a valid estimate for the residual

norm ‖Axλ − b‖2.

Write xλ = A
#
λ b and assume Cov(b) = η2I; choose the λ that solves

‖A xλ − b‖2 =
(

‖e‖2
2 − η2 trace(AA#)

)1/2
.

Note that the right-hand side now depends on λ.

Both the classical and the compensated discrepancy principle are

very sensitive to the estimate used for ‖e‖2.
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Ordinary/Compensated Discrepancy Principle
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(Ordinary) Cross-Validation

Leave-one-out approach:

skip ith element bi and predict this element.

A(i) = A([1: i − 1, i + 1: m], : )

b(i) = b([1: i − 1, i + 1: m])

x
(i)
λ =

(

A(i)
)#

λ
b(i)

b
predict
i = A(i, : ) x

(i)
λ .

The optimal λ minimizes the quantity

Vo =
m

∑

i=1

(

bi − b
predict
i

)2

.

But λ depends on the ordering of the data.
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Generalized Cross-Validation

Want a scheme for which λ is independent of any orthogonal

transformation of b (incl. a permutation of the elements).

Results in a method that seeks to minimize the prediction error:

‖Axλ − bexact‖2 .

Grace Wahba has shown that if the noise is white then

λGCV = λopt(1 + o(1)),

where λopt mimimizes the predictive mean-square error and

o(1) → 0 as m → ∞.
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Practical GCV

Minimize the GCV function

G(λ) =
‖Axλ − b‖2

2

trace(Im − AA
#
λ )2

=
V(λ)

T (λ)

where

V(λ) =
‖Axλ − b‖2

2

T (λ)

T (λ) = trace(Im − A A
#
λ ) = m −

n
∑

i=1

fi .

If Cov(b) = η2I then V(λ) levels off at an estimate of η2.

The function T (λ) is a slowly increasing function of λ.
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The GCV Function
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Occasional Failure

Occasional failure leading to a too small λ; more pronounced for

correlated noise.
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10−3 Minimum of GCV function

GCV function at optimal lambda
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Parameter-Choice and the L-Curve

Recall that the L-curve basically consists of two parts.

• A “flat” part where the regularization errors dominates.

• A “steep” part where the perturbation error dominates.

The optimal regularization parameter (in the pragmatic sense)

must lie somewhere near the L-curve’s corner.

Assume for simplicity that m = n, and recall that

‖xλ‖2
2 =

m
∑

i=1

(

σ2
i

σ2
i + λ2

uT
i b

σi

)2

‖b − Axλ‖2
2 =

n
∑

i=1

(

λ2

σ2
i + λ2

uT
i b

)2

.

Also recall that b = bexact + e.
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The Flat and Steep Parts

The component bexact dominates when λ is large:

‖xλ‖2 ≈ ‖xexact‖2

‖b − Axλ‖2
2 ≈ λ4

n
∑

i=1

(

uT
i b

σ2
i

)2

The error e dominates when λ is small (uT
i e ≈ ±ε0):

‖A#
λ e‖2

2 ≈ λ−4
n

∑

i=1

(

σi uT
i e

)2 ≈ λ−4 ε20‖A‖2
F

‖b − AA
#
λ e‖2

2 ≈ ε20

n
∑

i=1

(

λ2

σ2
i + λ2

)2

≈ n ε20 .
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The Key Idea

The flat and the steep parts of the L-curve represent solutions that

are dominated by regularization errors and perturbation errors.

• The balance between these two errors must occur near the

L-curve’s corner.

• The two parts – and the corner – are emphasized in log-log

scale.

• Log-log scale is insensitive to scalings of A and b.

An operational definition of the corner is required.

Write the L-curve as

(log ‖A xreg − b‖2 , log ‖L xreg‖2)

and seek the point with maximum curvature.
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Comparison of Parameter-Choice Methods:
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Conclusions About the Discrepancy Principle

• Using the estimate η
√

m of ‖e‖2, both the ordinary and

compensated discrepancy principles oversmooth as well as

undersmooth. The large number of instances of

undersmoothing leads to a large tail in the histogram.

• Using the exact value of ‖e‖2, the discrepancy principle

consistently oversmooths while the compensated discrepancy

principle yields relative errors comparable to GCV.

• Both discrepancy principles are less robust than GCV and the

L-curve, except when a very good estimate of ‖e‖2 is available.
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Conclusions About GCV and the L-Curve

• The GCV method, on the average, leads to a slight

oversmoothing which accounts for the increased average error,

compared to the optimal results. Occasionally GCV

undersmooths, leading to larger errors that constitute the

histogram’s tail.

• The L-curve criterion consistently oversmooths—there is no

λ < λopt. Hence, the average error is greater than that for

GCV, but the histogram has no tail.

• The L-curve criterion is more robust than GCV, in the sense

that the L-curve criterion never leads to large errors while

GCV occasionally does.
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Contents of The Third Lecture

1. Discretized problems

2. Singular value decomposition (SVD)

(a) Definition

(b) Analysis

3. The discrete Picard condition

4. SVD ∼ SVE

5. Stabilization = reduction of noise
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Discrete Problems

The rest of these lectures focus on discretized systems, either square

x = b

or overdetermined

minx ‖Ax− b‖2

with a very ill-conditioned coefficient matrix A,

cond(A) � 1,

arising from the discretization of an ill-posed problem.

Noise model:

b = bexact + e, where bexact = Axexact

and the vector e represents the noise in the data.
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Statistical Issues

Let Cov(b) be the covariance for the right-hand side.

Then the covariance matrix for the (least squares) solution is

Cov(xLS) = (ATA)−1AT Cov(b)A (ATA)−1.

Unless otherwise stated, we assume for simplicity that bexact and e

are uncorrelated, and that

Cov(b) = Cov(e) = η2I,

then

Cov(xLS) = η2(ATA)−1.

cond(A) � 1 ⇒ Cov(xLS) is likely to have very large elements.
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The Singular Value Decomposition

Assume that A is m× n and, for simplicity, also that m ≥ n:

A = U ΣV T =

n
∑

i=1

ui σi v
T
i

where U and V consist of singular vectors

U = (u1, . . . , un) , V = (v1, . . . , vn)

with UTU = V TV = In, and the singular values satisfy

Σ = diag(σ1, . . . , σn) , σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 .

Then ‖A‖2 = σ1 and cond(A) = ‖A‖2 ‖A
†‖2 = σ1/σn.
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SVD Software for Dense Matrices

Software package Subroutine

ACM TOMS HYBSVD

EISPACK SVD

IMSL LSVRR

LAPACK GESVD

LINPACK SVDC

NAG F02WEF

Numerical Recipes SVDCMP

Matlab svd

Complexity of SVD algorithms: O(mn2).
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Important SVD Relations

Relations similar to the SVE

Avi = σi ui

ATui = σi vi

‖Avi‖2 = σi

‖ATui‖2 = σi







i = 1, . . . , n.

These equations are related to the (least squares) solution:

x =

n
∑

i=1

(vT
i x) vi

Ax =
n

∑

i=1

σi (vT
i x)ui , b =

n
∑

i=1

(uT
i b)ui

A−1b =

n
∑

i=1

uT
i b

σi
vi .
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What the SVD Looks Like

The following figures show the SVD of the 64 × 64 matrix A from

the model problem, computed by means of csvd:

>> help svd

SVD Singular value decomposition.

[U,S,V] = SVD(X) produces a diagonal matrix S, of the same

dimension as X and with nonnegative diagonal elements in

decreasing order, and unitary matrices U and V so that

X = U*S*V’.

S = SVD(X) returns a vector containing the singular values.

[U,S,V] = SVD(X,0) produces the "economy size"

decomposition. If X is m-by-n with m > n, then only the

first n columns of U are computed and S is n-by-n.
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The Singular Values

0 10 20 30 40 50 60
10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

i

σ i

Singular values



Geilo Winter School – Ill-Posed Problems – 3. Discrete Ill-Posed Problems 9

The Left and Right Singular Vectors
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Some Observations

• The singular values decay gradually to zero.

• No gap in the singular value spectrum.

• Condition number cond(A) = “∞.”

• Singular vectors have more oscillations as i increases.

• In this problem, # sign changes = i− 1.
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The Discrete Picard Plot
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Discrete Picard Plot with Noise
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Discrete Picard Plot – More Noise

0 2 4 6 8 10 12 14 16 18 20
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

i

Picard plot

σ
i

|u
i
Tb|

|u
i
Tb|/σ

i

Geilo Winter School – Ill-Posed Problems – 3. Discrete Ill-Posed Problems 14

The Discrete Picard Condition

The relative decay of the singular values σi and the right-hand

side’s SVD coefficients uT
i b plays a major role!

The Discrete Picard Condition. Let τA denote the level at

which the singular values of A level off. Then the discrete Picard

condition is satisfied if, for all singular values σi > τA, the

corresponding coefficients |uT
i b

exact|, on the average, decay to zero

faster than the σi.

Can base the analysis on the moving geometric mean

ρi = σ−1
i





i+q
∏

j=i−q

|uT
i b|





1/(2q+1)

, i = 1 + q, . . . , n− q .
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Computation of the SVE

Based on the Galerkin method with orthonormal φi and ψj .

1. Discretize K to obtain n× n matrix A, and compute its SVD.

2. Then σ
(n)
j → µj as n→ ∞.

3. Define the functions

ũj(s) =
n

∑

i=1

uij ψi(s) , j = 1, . . . , n

ṽj(t) =

n
∑

i=1

vij φi(t) , j = 1, . . . , n .

Then ũj(s) → uj(s) and ṽj(t) → vj(t) as n→ ∞.
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More Precise Results

Let

‖K‖2
2 ≡

∫ 1

0

∫ 1

0

|K(s, t)|2 ds dt , δ2n ≡ ‖K‖2
2 − ‖A‖2

F .

Then for i = 1, . . . , n

0 ≤ µi − σ
(n)
i ≤ δn

σ
(n)
i ≤ σ

(n+1)
i ≤ µi

max {‖ui − ũi‖2 , ‖vi − ṽi‖2} ≤

(

2 δn
µi − µi+1

)1/2

.
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Stabilization = Reduction of Noise

Recall that both the (least squares) solution is given by

x =

n
∑

i=1

uT
i b

σi
vi.

Must get rid of the “noisy” SVD components. Note that

uT
i b = uT

i b
exact + uT

i e ≈







uT
i b

exact, |uT
i b

exact| > |uT
i e|

uT
i e, |uT

i b
exact| < |uT

i e|.

Hence, due to the DPC:

• “noisy” SVD components are those for which |uT
i b

exact| is small,

• and therefore they correspond to the smaller singular values σi.
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Truncated SVD

A simple way to reduce the influence of the noise is to discard the

SVD coefficients corresponding to the smallest singular values.

Define truncated SVD (TSVD) solution

xk =

k
∑

i=1

uT
i b

σi
vi, k < n.

Can show that if Cov(b) = η2I then

Cov(xk) = η2
k

∑

i=1

vi v
T
i

and thus we can expect that both

‖xk‖2 � ‖x‖2 and ‖Cov(xk)‖2 � ‖Cov(x)‖2.

The prize we pay for smaller covariance is bias: E(xk) 6= E(xLS).
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Truncated SVD Solutions

0 20 40 60
0

0.5

1

k = 16

0 20 40 60
0

0.5

1

k = 2

0 20 40 60
0

0.5

1

k = 4

0 20 40 60
0

0.5

1

k = 6

0 20 40 60
0

0.5

1

k = 8

0 20 40 60
0

0.5

1

k = 10

0 20 40 60
0

0.5

1

k = 12

0 20 40 60
0

0.5

1

k = 14

0 20 40 60
0

0.5

1

Exact solution

Geilo Winter School – Ill-Posed Problems – 3. Discrete Ill-Posed Problems 20

The Truncation Parameter

Note: the truncation parameter k in

xk =
k

∑

i=1

uT
i b

σi
vi

is dictated by the coefficients uT
i b, not the singular values!

Basically we should choose k as the index i where |uT
i b| start to

“level off” due to the noise.
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Contents of The Fourth Lecture

1. Tikhonov regularization

(a) Definition

(b) The smoothing norm

(c) Implementation

2. Perturbation results

3. L-curve analysis
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Regularization

Regularization = stabilization: how to deal with solution

components corresponding to the small singular values.

Most approaches involve the residual norm

ρ(f) =

∥

∥

∥

∥

∫ 1

0

K(s, t) f(t) dt − g(s)

∥

∥

∥

∥

,

and a smoothing norm ω(f) that measure the “size” of the

solution f . Example of a common choice:

ω(f)2 =

∫ 1

0

|f (p)(t)|2 dt

1. Minimize ρ(f) s.t. ω(f) ≤ δ.

2. Minimize ω(f) s.t. ρ(f) ≤ α.

3. Tikhonov: min
{

ρ(f)2 + λ2 ω(f)2
}

.

Geilo Winter School – Ill-Posed Problems – 4. Regularization 3

Discrete Tikhonov Regularization

Replace the continuous problem with a linear algebra problem.

Minimization of the residual ρ is replaced by

min ‖Ax − b‖2 , A ∈ Rm×n ,

where A and b are obtained by discretization of the integral

equation.

Must also discretize the smoothing norm

Ω(x) ≈ ω(f).

The resulting discrete Tikhonov problem is

min
{

‖Ax − b‖2
2 + λ2 Ω(x)2

}

.
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Tikhonov Solutions
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The Matrix L

Often Ω(x) can be written as

Ω(x) = ‖L x‖2 or Ω(x) = ‖L (x − x∗)‖2 ,

where L approximates a derivative operator.

Examples of the 1. and 2. derivative operator on a regular mesh

L1 =







1 −1
. . .

. . .

1 −1






∈ R(n−1)×n

L2 =







1 −2 1
. . .

. . .
. . .

1 −2 1






∈ R(n−2)×n

(we have omitted factors n−1 and n−2 that are “absorbed” in λ).
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Sobolev Norms

Combinations of several derivative operators

Ω(x)2 =

q
∑

i=0

α2
i ‖Li (x − x∗)‖2

2 .

Numerical treatment: compute the QR factorization of the

“stacked” Li matrices






αq Lq

...

α0 L0






= Q R

and use ‖R x‖2 instead of λ2 ‖L x‖2.
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Inequality Constraints

Three important constraints to the solution: nonnegativity,

monotonicity, convexity.

All three can be put in the general form Gx ≥ 0:

x ≥ 0 (nonnegativity)

L1 x ≥ 0 (monotonicity)

L2 x ≥ 0 (convexity)

where L1 and L2 approximate the first and second derivative

operators, respectively.

The resulting least squares problem is

min

∥

∥

∥

∥

(

A

λL

)

x −

(

b

0

)∥

∥

∥

∥

2

subject to Gx ≥ 0 .
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The Need for Higher-Order Smoothing

A simple example with missing data.
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SVD and Discrete Tikhonov Regularization

Assume – for simplicity – that we use Tikhonov regularization in

standard form ⇒ L = In.

Then we can write the discrete Tikhonov solution xλ in terms of

the SVD of A

xλ =
n
∑

i=1

σ2
i

σ2
i + λ2

uT
i b

σi
vi.

The filter factors are given by

fi =
σ2

i

σ2
i + λ2

,

and their purpose is to dampen the components in the solution

corresponding to small σi.
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TSVD and Tikhonov Regularization

TSVD and Tikhonov solutions are both filtered SVD expansions.

The regularization parameter is either k or λ.
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For each k, there exists a λ such that xλ ≈ xk.
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Solution and Residual Norms
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Monotonic Behavior of the Norms

The TSVD solution and residual norms vary monotonically with k

‖xk‖
2
2 =

k
∑

i=1

(uT
i b/σi)

2 ≤ ‖xk+1‖
2
2

‖Axk − b‖2
2 =

m
∑

i=k+1

(uT
i b)2 ≥ ‖A xk+1 − b‖2

2

Similarly, the Tikhonov solution and residual norms cary

monotonically with λ:

‖xλ‖
2
2 =

n
∑

i=1

(

fi
uT

i b

σi

)2

‖Axλ − b‖2
2 =

n
∑

i=1

(

(1 − fi) uT
i b
)2

+
m
∑

i=n+1

(uT
i b)2.
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Efficient Implementation

The original formulation

min
{

‖Ax − b‖2
2 + λ2 ‖L x‖2

2

}

.

Two alternative formulations

(AT A + λ2LT L) x = AT b

min

∥

∥

∥

∥

(

A

λL

)

x −

(

b

0

)∥

∥

∥

∥

2

The first shows that we have a linear problem. The second shows

how to solve it stably:

• treat it as a least squares problem,

• utilize the sparsity.
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TSVD Perturbation Bound

Theorem.

Let b = bexact + e and let xk and xexact
k denote the TSVD solutions.

Then
‖xexact

k − xk‖2

‖xk‖2
≤

σ1

σk

‖e‖2

‖Axk‖2
.

We see that the condition number for the TSVD solution is σ1/σk.

Can be much smaller than cond(A) = σ1/σn.
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Tikhonov Perturbation Bound

Theorem.

Let b = bexact + e and let xexact
L,λ and xL,λ denote the solutions to

min{‖Ax−bexact‖2
2 +λ2‖L x‖2

2} and min{‖Ax−b‖2
2 +λ2‖L x‖2

2}

computed with the same λ.

Assume that L−1 exists; then

‖xexact
L,λ − xL,λ‖2

‖xL,λ‖2
≤

κλ

1 − ε κλ

(

‖e‖2

‖Axλ‖2
+ ε κλ

‖b − bλ‖2

‖Axλ‖2

)

where

κλ =
‖A‖2 ‖L

−1‖2

λ

(

=
σ1

λ
for L = I

)

is the condition number for the Tikhonov solution.
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The L-Curve for Tikhonov Regularization

Plot of ‖L xL,λ‖2 versus ‖AxL,λ − b‖2 in log-log scale.

less filtering

more filtering

log || A x – b ||

lo
g 

|| 
L

x 
|| 2

2
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Properties of the L-Curve

The semi-norm ‖L xL,λ‖2 is a monotonically decreasing convex

function of the norm ‖AxL,λ − b‖2.

Define xLS = least squares solution and

δ2
0 =

m
∑

i=n+1

(uT
i b)2 (inconsistency measure.)

Then

δ0 ≤ ‖AxL,λ − b‖2 ≤ ‖b‖2

0 ≤ ‖L xL,λ‖2 ≤ ‖L xLS‖2 .

Any point (δ, η) on the L-curve is a solution to the following two

inequality-constrained least squares problems:

δ = min ‖Ax − b‖2 subject to ‖L x‖2 ≤ η

η = min ‖L x‖2 subject to ‖Ax − b‖2 ≤ δ .
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The L-Shaped Appearance of the L-curve

The L-curve has two distinctly different parts.

• The horizontal part where the regularization errors dominate.

• The vertical part where the perturbation errors dominate.

The log-log scale emphasizes the two different parts.

The “corner” is located approximately at

(

‖AxL,λ − b‖2 , ‖L xL,λ‖2

)

≈

(

√

σ2
0(m − n + p) , ‖L xexact‖2

)
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The Curvature of the L-Curve

Want to derive an analytical expression for the L-curve’s curvature

κ in log-log scale.

Consider L = I and define

η = ‖xλ‖
2
2 , ρ = ‖A xλ − b‖2

2

and

η̂ = log η , ρ̂ = log ρ .

Then the curvature is given by

κ = 2
ρ̂′η̂′′ − ρ̂′′η̂′

((ρ̂′)2 + (η̂′)2)3/2
.

This can be used to define the “corner” of the L-curve as the point

with maximum curvature.
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A More Practical Formula

The first derivatives of η̂ and ρ̂ are logarithmic derivatives,

η̂′ = η′/η , ρ̂′ = ρ′/ρ

and it can be shown that

ρ′ = −λ2η′ .

The second derivatives satisfy the relation

ρ′′ =
d

dλ

(

−λ2η′
)

= −2 λ η′ − λ2η′′ .

When all this is inserted into the equation for κ, we get

κ = 2
η ρ

η′

λ2η′ρ + 2 λ η ρ + λ4η η′

(λ2η2 + ρ2)3/2
.
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Efficient Computation of the Curvature

The quantities η and ρ readily available.

Straightforward to show that

η′ =
4

λ
xT

λ zλ

where zλ is given by

zλ =
(

AT A + λ2I
)−1

AT (Axλ − b) ,

i.e., zλ is the solution to the problem

min

∥

∥

∥

∥

(

A

λ I

)

z −

(

Axλ − b

0

)∥

∥

∥

∥

2

.

This can be used to compute zλ efficiently.
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Contents of The Sixth Lecture

• Why iterative methods?

• Landweber iteration

• ART

• Regularizing CGLS iterations

• Toeplitz structure

• Fast Toeplitz matrix multiplication
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Advantages of Iterative Methods

• The matrix A is never altered, only “touched” via

matrix-vector multiplications Ax and AT y.

• The matrix A is not explicitly required – we only need a “black

box” that computes the action of A or the underlying operator.

• May produce a natural sequence of regularized solutions; stop

when the solution is “satisfactory” (parameter choice).

• Atomic operations are easy to parallelize.
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Iterative Methods

1. Iterative solution of a regularized problem, such as Tikhonov

(
AT A + λ2LT L

)
x = AT b .

Challenge: to construct a good preconditioner!

2. Iterate on the unregularized system, e.g., on

AT Ax = AT b

and use the iteration number as the regularization parameter.

The latter approach relies on semi-convergence:

• initial convergence towards xexact,

• followed by (slow) convergence to xLS = A†b.

Must stop at the end of the first stage!
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Working With Seminorms

No problem to work with seminorm ‖L x‖2. Assume that

x̄(k) = Pk

(
ĀT Ā

)
ĀT b̄

where Ā and b̄ are the standard-form quantities:

Ā = AL†
A b̄ = b−Ax0 .

Inserting this, we obtain

x̄(k) = Pk

(
(L†

A)T AT A (L†
A)

)
(L†

A)T AT (b−Ax0)

and, using x(k) = L†
Ax̄(k),

x(k) = Pk

(
L†

A(L†
A)T AT A

)
L†

A(L†
A)T AT b + x0

Hence, the matrix L†
A(L†

A)T works as a “right preconditioner.”
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Landweber Iteration

Richardson, Landweber, Fridman, Picard, Cimino, . . .

x(k) = x(k−1) + ω AT r(k−1) , k = 1, 2, . . .

where r(k) = b−Ax(k) and 0 < ω < 2 ‖AT A‖−1
2 = 2 σ−2

1 .

Generalization by Strand

x(k) = x(k−1) + F(AT A) AT r(k−1) , k = 1, 2, . . .

where F is a rational function of AT A. SVD analysis:

f
(k)
i = 1− (1− ω σ2

i )k ordinary method

f
(k)
i = 1−

(
1− σ2

i F(σ2
i )

)k
generalized method.
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Landweber Filter Factors
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ART

. . . and the title to the best acronym goes to . . .

Kaczmarz’s method = algebraic reconstruction technique (ART):

x← x +
bi − aT

i x

‖ai‖22
ai , i = 1, . . . , m ,

where bi is the ith component b.

Mathematically equivalent to Gauss-Seidel’s method for the

problem

x = AT y , AAT y = b .

Used successfully in computerized tomography.

In general: fast initial convergence, then slow.

Geilo Winter School – Ill-Posed Problems – 6. Iterative Methods 8

Slow Convergence

0 10 20 30 40 50 60 70 80
10−3

10−2

10−1

100
Error histories

Landweber
nu−method
Kaczmarz
CGLS
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Regularizing CGLS Iterations

CGLS: CG applied to the normal equations AT Ax = AT b:

αk = ‖AT r(k−1)‖22 / ‖Ad(k−1)‖22

x(k) = x(k−1) + αk d(k−1)

r(k) = r(k−1) − αk Ad(k−1)

βk = ‖AT r(k)‖22 / ‖AT r(k−1)‖22

d(k) = AT r(k) + βk d(k−1)

where r(k) = b−Ax(k) = residual vector, and d(k) search direction.

Initialization:

x(0) = starting vector; often zero)

r(0) = b−Ax(0)

d(0) = AT r(0).
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CGLS Solutions
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Return to Deconvolution Problems

For deconvolution problems, the kernel satisfies

K(s, t) = h(s− t)

and the matrix elements in a quadrature discretization become

aij = wj h(si − tj), i, j = 1, . . . , n.

Hence, A = H W where W = diag(w1, . . . , wn) and

hij = h(si − tj) , i, j = 1, . . . , n .

Simple sampling: si = i/n, tj = j/n and W = n−1I; then

aij = n−1 h
(
(i− j)/n

)
, i, j = 1, . . . , n.

Note that ai+1,j+1 = aij → structure!
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Toeplitz Matrices

When the matrix elements only depend on i− j:

tij = ti+`,j+` = ti−j for all relevant i, j, and `.

What the Toeplitz matrix looks like:

T =




t0 t−1 t−2 · · · t1−n

t1 t0 t−1 · · · t2−n

t2 t1 t0 · · · t3−n

...
...

...
. . .

...

tn−1 tn−2 tn−3 · · · t0




Can utilize this structure in various ways . . .
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Toeplitz Matrices and Persymmetry

Persymmetry – symmetry across the anti-diagonal:

tij = tn−j+1,n−i+1 for all relevant i and j.

Matrix notation: define the exchange matrix

J =




1

. .
.

1


 ,

then persymmetry is expressed as T J = (T J)T = J TT .

Now use J2 = I ⇔ J−1 = J to show that T = J TT J , which

implies that the inverse is also persymmetric:

T−1 = (J TT J)−1 = J−1(T−1)T J−1 = J (T−1)T J .
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SVD of a Toeplitz Matrix

Thus the SVD of T is given by

T =

n∑

ji=1

ui γiλi (γiJij)
T

where (λi, ui) = eigenpairs of T J (symmetric), and γi = ±1 is

chosen to make γiλi positive.

Except perhaps for a sign change, the vector vj is identical to uj

with its elements in reverse order.

If T is symmetric then uj = γ̂jvj , with γ̂ = ±1, and:

• the left and right singular vectors are identical, except perhaps

for a sign change;

• the sequence of elements in each vector is symmetric around

the middle, except perhaps for a sign change.
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Numerical Example

T =




0 1 2

1 0 1

2 1 0




U =




.628 .707 −.325

.460 0 .888

.628 −.707 −.325


 , V =




.628 −.707 .325

.460 0 −.888

.628 .707 .325




u1 = J u1 = v1 = J v1

u2 = −J u2 = −v2 = J v2

u3 = J u3 = −v3 = −J v3
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Convolution

Define the circulant matrix

Ch =




h0 hn−1 hn−2 · · · h1

h1 h0 hn−1 · · · h2

h2 h1 h0 · · · h3

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

hn−1 hn−2 hn−3 · · · h0




,

Then it is easy to see that

g = h ∗ f =

N−1∑

j=0

fj h(i−j)modN = Ch f ,

where ∗ denotes cyclic convolution of the two vectors h and F .

We can compute h ∗ f in about 2.5 n log2(n) flops via the FFT.
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Convolution and DFT

Can write the DFT as (where ı̂ = imaginary unit):

DFT(f) = Fn f, (Fn)ij = (exp(−2πı̂/n))(i−1)(j−1) .

Thus

g = IDFT (DFT(h)�DFT(f))

= F−1
n ((Fn h)� (Fn f))

= F−1
n (diag(Fn h) Fn f)

= F−1
n diag(Fn h) Fn f.

We conclude that

Ch = F−1
n diag(Fn h) Fn

is the eigenvalue decomposition of Ch.
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Imbedding Toeplitz Matrix in Circulant Matrix

We can always embed a Toeplitz matrix in a circulant matrix:

C =

(
T T̂

T̂ T

)
=




t0 t−1 t−2 t−3 0 t3 t2 t1

t1 t0 t−1 t−2 t−3 0 t3 t2

t2 t1 t0 t−1 t−2 t−3 0 t3

t3 t2 t1 t0 t−1 t−2 t−3 0

0 t3 t2 t1 t0 t−1 t−2 t−3

t−3 0 t3 t2 t1 t0 t−1 t−2

t−2 t−3 0 t3 t2 t1 t0 t−1

t−1 t−2 t−3 0 t3 t2 t1 t0




such that

C

(
u

0

)
=

(
T T̂

T̂ T

)(
u

0

)
=

(
T u

z

)
.
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FFT-Based Toeplitz Multiplication Algorithm

Assume that T is symmetric and n× n with n a power of 2.

Also define t = (t0, t1, . . . , tn−1)
T and t̂ = (0, tn−1, . . . , t1)

T .

The algorithm for computing v = T u:

1. h =

(
t

t̂

)

2. f =

(
u

0

)

3. g = h ? f via FFT

4. v = g(1: n)

Flop count: (2.5 + 5) (2n) log2(2n) ≈ 15 n log2(n) (instead of 2n2),

once DFT(h) has been computed and stored – assuming n = 2p.
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Does It Pay Off?

The answer depends on the structure of the matrix.

If the Toeplitz matrix is full, the answer is “yes.”

If the Toeplitz matrix is

• banded, i.e., has zero elements for |i− j| > nb,

• effectively banded with very small elements outside a band

then it may be be efficient to use conventional banded matrix

multiplication.

See the following figure.
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Flop Counts Toeplitz Matrix-Vector Muliplication

100 101 102 103 104
101

102

103

104

105

106

107

Matrix dimension n

Fl
op

s

Full matrix
FFT−alg.
n

b
 = 40

n
b
 = 20

n
b
 = 10

n
b
 = 5


