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Chapter 1

Introduction

The goal of this lecture is to provide an overview of important techniques used for the anal-
ysis, regularization, and numerical solution of parameter identification problems. Generally
speaking, parameter identification problems deal with the reconstruction of unknown func-
tions or geometric objects appearing as parameters (coefficients, right-hand sides, boundary
values) in systems of differential equations. A parameter identification problem is a so-called
inverse problem, in the sense that it somehow inverts the process of solving the differential
equations.

A common property of a vast majority of inverse problems is their ill-posedness. In the
sense of Hadamard, a mathematical problem (we can think of an equation or optimization
problem) is well-posed if it satisfies the following properties:

1. Existence: For all (suitable) data, there exists a solution of the problem (in an
appropriate sense).

2. Uniqueness: For all (suitable) data, the solution is unique.

3. Stability: The solution depends continuously on the data.

According to this definition, a problem is ill-posed if one of these three conditions is violated.
However, in general we shall be concerned in particular with problems violating the third
condition, i.e., the solution does not depend on the data in a stable way.

The prototype of an inverse problem will be an equation of the form

F (x) = y, (1.1)

with a function space setting to be specified below. For such an equation, the unknown is
x and the data are usually the right-hand side y. If the stability condition is violated, the
numerical solution of the inverse problem by standard methods is difficult and often yields
instability, even if the data are exact (since any numerical method has internal errors acting
like noise). Therefore, special techniques, so-called regularization methods have to be used in
order to obtain a stable approximation of the solution. Since the appropriate construction
and analysis of regularization methods and subsequently (or simultaneously) of numerical
schemes is the major issue in the solution of inverse problems, most of the lecture will be
concerned with this task.

Inverse problems and parameter identification are very active fields of research in applied
sciences, with a fast growing bibliography. Throughout the lecture notes we shall refer to
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various papers and monographs including further details on several aspects. As general ref-
erences on inverse problems, and also as sources for contents in this lecture we refer to the
monographs by Engl, Hanke, Neubauer [13], Kirsch [18], and Vogel [24], the latter focusing
on computational methods. As general literature on parameter identification we refer to the
books by Banks and Kunisch [4], by Isakov [16, 17] and collections of papers in [3, 8, 15].
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Chapter 2

Examples of Parameter
Identification Problems

In the following we shall discuss some motivating examples of parameter identification prob-
lems. The first one, namely differentiation of data, is not a parameter identification problem
in the strict sense, but is a good starting point to gain insight into properties of ill-posed
problems. Moreover, it often appears as a subproblem in practical applications of parameter
identification. We then proceed to a simple example of distributed parameter identification,
which allows to discuss typical notions and properties of parameter identification problems.
Finally, we give a short presentation of two prominent problems in parameter identification,
namely electrical impedance tomography and inverse scattering, which rather serve as moti-
vating examples than as sources for a detailed mathematical investigation at this stage.

2.1 Differentiation of Data

One of the simplest ill-posed problems is (numerical) differentiation of noisy functions, a task
one faces in many applications. Assume that we want to compute the derivative of a function
which includes additive noise, i.e., instead of the exact function f we are only given the
function f δ with

f δ(x) = f(x) + nδ(x), x ∈ [0, 1]

and f δ(0) = f(0) = 0, f δ(1) = f(1) = 0, where nδ(x) represents the data noise. In many
typical measurement devices, the noise at each point x (nδ(x)) can be modeled as a normal
distribution with mean zero and variance δ > 0, being independent at different measurement
points x1 and x2. From the law of large numbers one may expect that

∫ 1

0
|nδ(x)|2 dx ≈ δ2,

i.e., one obtains some information of the noise. However, even if we know exactly that
∫ 1

0
|nδ(x)|2 dx = δ2

and δ is arbitrarily small, we cannot obtain any estimate on the derivative df
dx . In the worst

case, the noise nδ is not differentiable, so that one cannot even compute a derivative. However,
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even if we assume that the noise is differentiable (even analytic) the error in the derivative
can be arbitrarily large. Take for example

nδ(x) =
√

2δ sin(2πkx)

for some k ∈ N. Then,
∫ 1
0 |nδ(x)|2 dx = δ2 and

df δ

dx
(x) =

df

dx
(x) +

√
22πδk sin(2kπx)

Now note that k can be arbitrarily large and therefore δk can be arbitrarily large. Hence, the
L2-error (∫ 1

0

(
df δ

dx
(x)− df

dx
(x)

)2

dx

)1/2

= 2πδk

or the L∞-error

sup
x∈[0,1]

∣∣∣∣
df δ

dx
(x)− df

dx
(x)

∣∣∣∣ =
√

22πδk

can be arbitrarily large. This statement holds true in general for ill-posed problems (and
could actually be used as a definition):

Without regularization and without further information, the error between the ex-
act and noisy solution can be arbitrarily large, even if the noise is arbitrarily small.

How can additional information that helps to bound the error, look like ? Of course, one
could assume that the noise is bounded in a stronger norm, e.g.,

∫ 1

0

(
dnδ

dx
(x)

)2

dx ≤ δ2.

In this case, we would obtain in a trivial way the error estimate
(∫ 1

0

(
df δ

dx
(x)− df

dx
(x)

)2

dx

)1/2

≤ δ,

but our result does not correspond to the practical applications, where we can hardly get an
estimate for dnδ

dx . Thus, it seems not a good idea to assume stronger bounds on the noise.
A more realistic alternative is to assume further regularity of the solution f , e.g., f ∈

C2([0, 1]). The error is then still arbitrarily large for the original problem, but can be esti-
mated if regularization is used. As a simple example we could smooth the data by solving

−α
d2fα

dx2
(x) + fα(x) = f δ(x), fα(0) = fα(1) = 0,

which is also equivalent to applying the associated Green operator (an integral operator with
smooth kernel) to f δ. We shall see later that this approach can be identified with so-called
Tikhonov regularization. Note that due to the standard variational interpretation of elliptic
differential operators, this smoothing is also equivalent to mimimizing the functional

Hα(fα) =
∫ 1

0
(fα(x)− f δ(x))2 dx + α

∫ 1

0

(
dfα

dx
(x)

)2

dx,
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i.e., we perform a least-squares fit with a penalty term that enforces dfα

dx to be bounded. Then
we have

−α
d2

dx2
(fα(x)− f(x)) + (fα(x)− f(x)) = (f δ(x)− f(x)) + α

d2f

dx2
(x)

and multiplication by fα(x)− f(x) and integration with respect to x yields

∫ 1

0

[
α

(
dfα

dx
− df

dx

)2

+ (fα(x)− f(x))2
]

dx =

∫ 1

0

(
f δ(x)− f(x) + α

d2f

dx

)
(fα(x)− f(x)) dx

where we have used integration by parts for the first term. By applying the Cauchy-Schwarz
inequality to the right-hand side we further obtain

∫ 1

0

[
α

(
dfα

dx
− df

dx

)2

+
1
2
(fα(x)− f(x))2

]
dx ≤

∫ 1

0
(f δ(x)− f(x))2 dx + α2C2

≤ δ2 + α2C2,

where C = ‖f‖C2 . Thus, we may conclude in particular
∫ 1

0

(
dfα

dx
− df

dx

)2

dx ≤ δ2

α
+ αC2,

i.e., we obtain a bound on the error in terms of α and δ. The obvious next question is the
choice of the regularization parameter: How to choose α such that the error in the solution is
minimal ? In general it will not be possible to really minimize the error, but with an estimate
like the one above we can at least minimize the right-hand side, which happens for α = δ

C
and the error estimate takes the form

∫ 1

0

(
dfα

dx
− df

dx

)2

dx ≤ 2δ.

If we take the square root in this estimat to obtain the norm on the left-hand side, the error
is
√

2δ, i.e., of order
√

δ and hence, much larger than the data error δ. This is another typical
effect for ill-posed problems: Even with regularization, we can never achieve an error in the
reconstruction which is as slow as the error in the data. Note also that the error bound

√
2δ

was only achieved for f ∈ C2([0, 1]). If we only assume that f ∈ C1([0, 1]), which seems
actually much more natural for differentiating once, we would need to estimate alternatively

∫ 1

0
α

d2f

dx
(fα(x)− f(x)) dx = −α

∫ 1

0
α

df

dx
(
dfα

dx
(x)− df

dx
(x)) dx

≤ α

2

∫ 1

0

(
dfα

dx
− df

dx

)2

dx +
α

2

∫ 1

0

(
df

dx

)2

dx.

Since the second integral can be estimated by α
2 C2 with C = ‖f‖C1 the final estimate becomes

∫ 1

0

(
dfα

dx
− df

dx

)2

dx ≤ 2
δ2

α
+ C2,
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and the right-hand side is larger than C no matter how we choose α. As we shall see later,

one can show by different arguments that
∫ 1
0

(
dfα

dx − df
dx

)2
dx → 0, but this convergence is

arbitrarily slow, another general statement for ill-posed problems: Without additional smooth-
ness assumptions on the exact solution, the convergence of regularized solutions is arbitrarily
small.

Above we have motivated inverse problems as the inversion of some kind of direct problem.
For numerical differentiation, we have started with the inverse problem immediately. However,
the direct problem can easily be obtained by integration. E.g., if f(0) = 0, then the direct
problem is given by the integral equation of the first kind

f δ(x) =
∫ x

0

df

dx
(y) dy.

This integral operator can be shown to be compact and we will see later that the inversion
of a compact linear operator is always an ill-posed problem.

We finally mention that analogous reasoning can be applied to numerical differentiation
of sampled data of a function f , e.g. by one-sided or central finite difference schemes. In this
case, the difference scheme has the effect of a regularization method and the grid size h plays
the role of a regularization parameter. A detailed analysis can be found in [13, 20].

2.2 Parameter Identification with Distributed Data

By parameter identification one usually denotes the problem of reconstructing unknown coef-
ficients in partial differential equations from indirect measurements of the solution. A simple
example is the following model from groundwater filtration, which is modeled through the
elliptic equation

−div (a∇u) = f, in Ω ⊂ Rd,

where u is the unkown, f a given source, and a the hydraulic permittivity. The direct
problem consists in solving the partial differential equation for u given a and suitable boundary
conditions on ∂Ω. The inverse problem consists in reconstructing the unknown function a on
Ω given a noisy measurement

uδ(x) = u(x) + nδ(x), x ∈ Ω,

of the solution.
If the solution of the direct problem is unique for each parameter a, which is the case for the

groundwater filtration problem with appropriate boundary conditions, then one can introduce
the parameter-to-solution map a 7→ ua, where ua is the solution of the direct problem given a
specific a. Note that even if the direct problem is linear (for u), the inverse problem and the
parameter-to-output map are usually nonlinear. E.g., in the groundwater filtration problem
we have u2a = 1

2ua, i.e., u2a 6= 2ua and hence, the problem is not linear.
The uniqueness question for parameter identification problems is usually denoted as iden-

tifiability. In the case Ω = [0, 1] with boundary conditions du
dx(0) = 0 and u(1) = 0 we can

easily answer the question by integrating the equation with respect to x, which yields the
formula

a(x)
du

dx
(x) =

∫ x

0
f(y) dy.
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Hence, the parameter a is determined uniquely for every x such that du
dx(x) 6= 0. On the

other hand, there are many realistic assumptions on f , which guarantee that du
dx 6= 0 almost

everywhere. For example, if the antiderivative of f is positive in (0, 1), then the above formula
shows that du

dx 6= 0. Another possible assumption is f(x) 6= 0 for almost every x, then du
dx

cannot vanish on an open interval I ⊂ [0, 1], since otherwise

0 =
d0
dx

=
d

dx

(
a(x)

du

dx
(x)

)
= f(x), x ∈ I

yields a contradiction. On the other hand, if f ≡ 0, then u ≡ 0 and du
dx ≡ 0 for any a and it is

never possible to reconstruct the parameter. The choice of f or in reality the action leading
to the source f is a matter of design of experiments, one could even ask the question what is
the best source with respect to stable reconstruction of the parameter.

The solution formula

a(x) =

∫ x
0 f(y) dy

du
dx(x)

also shows that besides the usual linear ill-posedness arising from the fact that data (u) have
to be differentiated, there is a nonlinear ill-posedness from the quotient, whose consequence
is that errors at small values of du

dx are amplified much stronger than errors at large values of
du
dx . I.e., if du

dx(x) is very small in an interval I, then we still have identifiability, but in practice
we must expect very high errors due to the noise amplification.

Another interesting issue in parameter identification problems are stability estimates,
which concerns the continuity of the inverse operator on special subsets. Note that for an
ill-posed problem, the inverse operator (if it exists) is not continuous, but it is continuous on
compact subsets of its domain. As an example we consider the compact subset

Cγ,M = { u ∈ C2([0, 1]) | , ‖u‖C2 ≤ M,
du

dx
≥ γ > 0 in [0, 1] }.

Let uj be the solution of the forward problem for given parameter aj , j = 1, 2. Then, from
the above inversion formula we obtain

a1(x)− a2(x) =

∫ x
0 f(y) dy

du1
dx (x)du2

dx (x)

(
du2

dx
(x)− du1

dx
(x)

)

Hence, we obtain
∫ 1

0
(a1(x)− a2(x))2 dx ≤ (

∫ 1
0 |f(y)| dy)2

γ4

∫ 1

0

(
du2

dx
(x)− du1

dx
(x)

)2

dx.

Using integration by parts and the Cauchy-Schwarz inequality we obtain
∫ 1

0

(
du2

dx
(x)− du1

dx
(x)

)2

dx

=
∫ 1

0
(u1(x)− u2(x))

(
d2u2

dx

2

(x)− d2u1

dx

2

(x)

)
dx

≤
√∫ 1

0
(u1(x)− u2(x))2 dx

√∫ 1

0

(
d2u2

dx2
(x)− d2u1

dx2
(x)

)2

dx

≤ 2M‖u1 − u2‖L2
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Thus, for the difference a1 − a2 we obtain the estimate

‖a1 − a2‖L2 ≤ ‖f‖L1

γ2

√
2M‖u1 − u2‖1/2

L2 ,

i.e., the inverse operator G : u ∈ Cγ 7→ a is locally Hölder continuous with exponent 1
2 in

the L2-norm. This result corresponds to the Hölder estimate we have derived for numerical
differentiation above. The effect that the estimate is only a local one for the parameter
identification problem, is a consequence of the nonlinearity. One clearly observes the influence
of smoothness of the solution, for increasing M the constant in the Hölder estimate increases.
Moreover, the nonlinear instability is reflected in the estimate by the term 1

γ2 , i.e., the closer
u gets to zero, the larger the constant becomes.

In practical applications, it is hardly the case that the solution of a partial differential
equation can be measured on a whole domain, since one usually cannot place many detectors
inside an object (e.g. a patient in medical applications or a microelectronic device). In such
cases boundary measurements either on a space- or time-boundary are available. An example
is the diffusion equation

∂u

∂t
= div (a∇u) + f in Ω× (0, T ),

with measurements at final time, i.e., u(x, T ), for x ∈ Ω, or at the boundary, e.g., ∂u
∂n on

∂Ω × (0, T ). Of course, with such a measurement, the dimensionality of the data is much
lower than the one of the unknown a(x, t). Thus, in such cases one can only identify special
parameters such as a = a(x), which is however realistic since a might describe material
properties that do not change in time.

2.3 Impedance Tomography

Impedance tomography can be considered as a parameter identification problem with bound-
ary measurements. The technological setup is as follows: at the boundary of an object
(represented by a domain D ⊂ Rd), different electrical voltages are applied, and the arising
electrical currents are measured. From these measurements one would like to reconstruct the
conductivity as a function of space, which gives information about different materials inside
the object.

The simplest mathematical model for this process is the solution of the elliptic partial
differential equation

div (a∇u) = 0 in D,

where u is the electric potential and a is the conductivity, modeled as a function of the spatial
location inside D. The applied voltages f are directly related to the electric potential u at
the boundary, i.e.,

u = f on ∂D.

The measured currents over the boundary for a specific voltage f are given by

gf = a
∂u

∂n
on ∂D.
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Hence, if all possible voltages f (in the sense of all functions on ∂D in a certain class) are
applied, and the corresponding currents are measured, the data consist of the Dirichlet-to-
Neumann map

Λa : f 7→ gf ,

which is a linear operator due to the linearity of the differential equation and boundary
conditions for fixed a.

The inverse problem of impedance tomography (called inverse conductivity problem) con-
sists in reconstructing the conductivity a as a function on D from a measurement of the
Dirichlet-to-Neumann map Λa. Again, due to the appearance of a as a coefficient in the
equation, the inverse problem is nonlinear, though the direct problem of computing the
Dirichlet-Neumann map for given a is linear.

From the dimensionality of the data it is not clear whether one can reconstruct the con-
ductivity uniquely, since the unknown is a function on D and the measurement is a linear
operator on a class of functions on ∂D. The answer depends on the spatial dimension, for
d ≥ 2 it is indeed possible to identify the conductivity uniquely if the class of voltages f
on ∂D is sufficiently large. For dimension d = 1, the answer is negative. Consider e.g. the
domain D = [0, 1] with boundary ∂D = {0, 1}. Then a function f on ∂D can be represented
by two values, f0 for x = 0, and f1 for x = 1. Hence, the Dirichlet-to-Neumann map can
be considered as a linear operator Λa : R2 → R2. Since each such linear operator can be
represented by a 2×2 matrix, the data consist only of 4 real numbers representing the matrix
entries, Since the dimension of the data space (R2×2) is finite, but the dimension of the space
for the unknown (e.g. C1(D)) is infinite, the data cannot suffice to determine the conductivity
uniquely.

An interesting case in impedance tomography is the case of objects consisting only of two
different materials and consequently of two different conductivity values, i.e.,

a(x) =
{

a1 if x ∈ Ω ⊂ D
a2 if x ∈ D\Ω.

The subset Ω could for example represent the shape of some inclusion in the object. In
such a case the interest is focused on identifying the shape Ω. Since the class of possible
functions a is now strongly limited by introducing a-priori knowledge, one may argue that
less measurements suffice in order to obtain uniqueness, at least for the shape Ω at given
values a1 and a2. Indeed, one can show that the measurement of the Neumann value for a
single Dirichlet value yields local uniqueness of the inverse problem.

2.4 Inverse Scattering

Inverse scattering problems are, generally speaking, inverse problems where one tries to re-
cover information about an unknown object from measurements of waves (or fields) scattered
by this object. Inverse scattering problems exist for all kinds of waves (e.g. acoustic and
electromagnetic waves) and all kinds of models (e.g. wave equation, Helmholtz equation,
Schrödinger equation, Maxwell equations). We consider the case of an acoustic scattering
problem for the Helmholtz equation in the following.

The original mathematical model for the density of an acoustic wave is the wave equation

∂2U

∂t
=

1
n2

∆u in Rd × R+,
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where n = n(x) describes a spatially varying acoustic profile (reciprocal to the speed of
sound), where n is scaled to equal one outside a compact domain (n = 1 may e.g. represent
surrounding air or water). The region where n(x) 6= 1 represents the scattering object, the
deviation of n(x) from one provides information about the structure of the scatterer. If we
only consider time harmonic waves of the form U(x, t) = eiktu(x) for k ∈ R, then the function
u solves the Helmholtz equation

∆u + k2n2u = 0.

In inverse scattering, an incident wave ui is sent in, which corresponds to the wave propagating
in absence of the scatterer, i.e.,

∆ui + k2ui = 0.

The scattered wave, which is the difference between the really observed and the incident wave,
i.e., with us = u− ui satisfies

∆us + k2us = k2f(ui + us),

f := 1− n2. The inverse scattering problem consists in identifying the compactly supported
function f from the knowledge of the incident wave ui and a measurement of the scattered
wave us. The scattered wave can only be measured far away from the scatterer, in many
cases it is reasonable to assume that us can be measured at the sphere with radius R >> 1
including the scatterer, which is referred to as the far-field pattern.

A closer look at the dimensonality of the unknown (f) and the data (us|r=R) shows that
we have to identify a function on a d-dimensional domain (d = 2, 3), but the measurement is a
function on a d−1-dimensional manifold. Hence, it seems obvious that a single measurement
will not suffice to determine f uniquely. For this reason, one uses many different incident
waves (varying the value of k) and measures the far-field pattern for all of them, which yields
reasonable data for the inverse problem.

Due to the appearance of f as a coefficient in the Helmholtz equation, the acoustic inverse
scattering problem is nonlinear. In several situations it is reasonable to assume that the
scattered wave in a neighborhood of the scatterer is much smaller than the incident wave,
i.e., the term ui + us on the right-hand side can be approximated well by ui. Under this
assumption one can use a linearized version of the inverse scattering problem via the equation

∆us + k2us = k2fui,

which is known as the Born approximation.
A related situation is inverse obstacle scattering, where the scattering appears at an ob-

stacle (represented by a domain D), which is not penetrated by the wave. In this case, the
Helmholtz equation is a model for wave propagation outside D, i.e.,

∆u + k2u = 0 in Rd\D,

coupled with a boundary condition of the form

∂u

∂n
+ λu = 0 on ∂D.

The inverse obstacle scattering problem consists in identifying the shape D, and similary to
the corresponding situation for electrical impedance tomography this can be achieved using
less measurements (i.e., for only few values of k).
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Chapter 3

Tikhonov-type Regularization

In this section we investigate Tikhonov regularization and related schemes more closely. In
general, we shall now consider a nonlinear operator equation of the form

F (x) = y, (3.1)

where F : X → Y is a continuous nonlinear operator. The extension of the regularization
method to the nonlinear case is not obvious, since one can neither carry out a singular
value decomposition nor define an adjoint of a nonlinear operator. The generalization to
the nonlinear case therefore needs a reformulation of Tikhonov regularization, which we shall
discuss in the following.

3.1 Tikhonov Regularization

We start from the Tikhonov regularization of a linear operator equation, which is determined
by the solution of the equation

(A∗A + αI)xδ
α = A∗yδ.

It is easy to verify that this linear equation is the first order optimality condition of the
quadratic optimization problem

Jα(x) := ‖Ax− yδ‖2 + α‖x‖2 → min
x∈X

. (3.2)

Note thatJα is strictly convex, which follows from

J ′′(x)(ϕ, ϕ) = 2‖Aϕ‖2 + 2α‖ϕ‖2 > 0

and hence, xδ
α is the unique global minimizer of the functional Jα.

The characterization of the regularized solution as a minimizer of the functional (3.2)
offers the possibility of an immediate generalization to the nonlinear case, since we can define
a regularized solution via

xδ
α ∈ argmin

x∈X

[
‖F (x)− yδ‖2 + α‖x− x∗‖2

]
. (3.3)

Here, x∗ ∈ X is a given prior, which might represent a-priori knowledge about the solution.
Note that in the nonlinear case, the value x∗ = 0 plays no special role, so we can in principle
consider any prior x∗. Consequently, we must also adapt our definition of generalization
solution to the nonlinear case:
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Definition 3.1. We shall call x ∈ X least-squares solution of (3.1) if

‖F (x)− y‖ = inf
x∈X

‖F (x)− y‖.

A least-squares solution x† is called x∗-minimum norm solution, if

‖x† − x∗‖ = inf{ ‖x− x∗‖ | x is least squares solution of (3.1) }.

For general nonlinear operators, we cannot expect the functional

Jα(x) := ‖F (x)− yδ‖2 + α‖x− x∗‖2 (3.4)

to be convex and hence, minimizers need not be unique. Moreover, there may exist global as
well as local minimizers, but we will only consider global minimizers as regularized solutions.

We start with differentiability properties of the functional Jα:

Proposition 3.2. If F is Frechet-differentiable, then the functional Jα : X → R is is Frechet-
differentiable with derivative

J ′α(x)ϕ = 2〈F (x)− y, F ′(x)ϕ〉+ 2α〈x− x∗, ϕ〉. (3.5)

Moreover, irf F is twice Frechet-differentiable, then the functional Jα : X → R is is Frechet-
differentiable with second derivative

J ′α(x)(ϕ1, ϕ2) = 2〈F ′(x)ϕ1, F
′(x)ϕ2〉+ 2〈F (x)− y, F ′′(x)(ϕ1, ϕ2)〉+ 2α〈ϕ1, ϕ2〉. (3.6)

Again, we can use the first-order optimality condition to verify that a regularized solution
satisfies

F ′(xδ
α)∗(F (xδ

α)− yδ) + α(xδ
α − x∗) = 0, (3.7)

the nonlinear analogue of the original equation. On the other hand, not every solution of (3.7)
is necessarily a regularized solution, since it could as well be a local minimum, saddle-point,
or even maximum of Jα.

So far, we have not yet considered the problem of existence of regularized solutions, which
is not obvious in the nonlinear case. In order to prove existence, we need an additional
condition, namely weak sequential closedness of the operator F :

F (x) = y if F (xn) ⇀ y, xn ⇀ x. (3.8)

This assumption is no severe restriction for inverse problems, in particular every compact
nonlinear operator is weakly sequentially closed.

Theorem 3.3. Let F : X → Y be a continuous operator satisfying (3.8). Then, there exists
a minimizer xδ

α ∈ X of the functional Jα defined by (3.4).

Proof. We first consider the level sets LM := { x ∈ X | Jα(x) ≤ M }. Since Jα(x∗) =
‖F (x∗) − yδ‖2 < ∞, the set LM is nonempty for M sufficiently large. Moreover, x ∈ LM

implies α‖x− x∗‖2 ≤ M and, due to the triangle inequality

‖x‖ ≤ ‖x∗‖+

√
M

α
=: R,
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i.e., LM is contained in a ball with radius R. Since balls in X are compact with respect to
the weak topology, the sets LM are weakly pre-compact.

Since Jα is bounded below by zero, its infimum is finite and thus, there exists a minimizing
sequence xn. Since xn ∈ LM for n sufficiently large, we can extract a weakly convergent
subsequence (again denoted by xn) with some limit x ∈ X. Moreover, the sequence F (xn) is
bounded due to

‖F (xn)− yδ‖2 ≤ M

and hence, there exists a weakly convergent subsequence (again denoted by the subscript n)
F (xn) → z ∈ Y . Because of the weak sequential closedness, we conclude z = F (x), and thus,

Jα(x) = lim
n→∞Jα(xn) = inf

x∈X
Jα(x),

i.e. xδ
α = x is a minimizer of Jα.

We now turn our attention to the stability properties of Tikhonov regularization for (3.1).
In the linear case, we have derived a Lipschitz estimate for the regularization operators, which
is not possible in the general nonlinear case. In the nonlinear case, we only obtain a weak
stability in a set-valued sense:

Proposition 3.4. Let F : X → Y be a continuous operator satisfying (3.8). Moreover, let
yn ∈ Y be a sequence such that yn → yδ and let xn be a corresponding sequence of minimizers
of Jα with yδ replaced by yn. Then xn has a weakly convergent subsequence and every weak
accumulation point is a minimizer of Jα.

Proof. Due to Theorem 3.3 we can find a sequence of minimizers xn corresponding to the
data yn. Since

‖xn − x2
∗‖ ≤

1
α
‖F (xn)− yn‖2 + ‖xn − x∗‖2 ≤ 1

α
‖F (x∗)− yn‖2

and since yn converges to yδ, xn is contained in a ball with radius independent of n. Due
to weak compactness we can extract a convergent subsequence. Now let x be a weak ac-
cumulation point of xn, without restriction of generality we assume that xn ⇀ x. Since
‖F (xn) − yn‖ ≤ ‖F (x∗) − yn‖ we also conclude boundedness of F (xn) and consequently
existence of a weak subsequence with limit z, and the weak sequential closedness implies
z = F (x). Finally, from the weak lower semicontinuity of the square of the norm in Hilbert
spaces we conclude

Jα(x) = ‖F (x)− yδ‖2 + α‖x− x∗‖2 ≤ lim inf
n
‖F (xn)− yn‖2 + α‖xn − x∗‖2

≤ lim inf
n
‖F (xδ

α)− yn‖2 + α‖xδ
α − x∗‖2

= ‖F (xδ
α)− yδ‖2 + α‖xδ

α − x∗‖2 = Jα(xδ
α).

Since xδ
α is a minimizer of Jα, x must be a minimizer, too.

Proposition 3.4 ensures that Tikhonov regularization has indeed a regularizing effect, i.e.,
the approximate problems are well-posed for α > 0. The obvious next question is convergence
of the regularization method with suitable choice of α in dependence on δ. As for stability,
this convergence apppears in a set-valued sense:
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Theorem 3.5. Let y ∈ Y such that there exists a x∗-minimum norm solution x† ∈ X with
F (x†) = y. Let yδ be noisy data satisfying

‖y − yδ‖ ≤ δ

and let xδ
α be a regularized solution satisfying (3.3). If α = α(δ, yδ) is chosen such that

α → 0,
δ2

α
→ 0 as δ → 0, (3.9)

then there exists a strongly convergent subsequence xδn
αn

(with δn → 0) and the limit of each
convergent subsequence is a x∗-minimum norm solution of (3.1).

Proof. Since xδ
α is a minimizer of Jα, we conclude

‖xδ
α − x∗‖2 ≤ 1

α
‖F (xδ

α)− yδ‖2 + ‖xδ
α − x∗‖2 =

1
α

Jα(xδ
α)

≤ 1
α

Jα(x) =
1
α
‖F (x†)− yδ‖2 + ‖x† − x∗‖2

≤ δ2

α
+ ‖x† − x∗‖2.

Since δ2

α → 0, it is bounded in particular, and hence, ‖xδ
α − x∗‖ is uniformly bounded with

respect to δ, which allows to extract a weakly convergent subsequence. For xδn
αn

being a weakly
convergent subsequence with limit x, the above estimate yields

‖x− x∗‖2 ≤ lim sup
n
‖xδn

αn
− x∗‖2 ≤ lim sup

n

δ2
n

αn
+ ‖x† − x∗‖2 = ‖x† − x∗‖2

and
‖F (x− y‖2 ≤ lim sup

n
‖F (xδn

αn
)− yδ‖2 ≤ lim sup

n
(δ2

n + αn‖x† − x∗‖2) = 0.

Hence, x satisfies F (x) = y and, by the definition of the least-squares solution

‖x− x∗‖ ≤ ‖x† − x∗‖ = inf{ ‖x− x∗‖ | x is least squares solution of (3.1) },
which implies that x is a least-squares solution of (3.1).

It remains to verify strong convergence of xδn
αn

. For this sake we expand

‖xδn
αn
− x‖2 = ‖xδn

αn
− x∗‖2 + ‖x− x∗‖2 − 2〈xδn

αn
− x∗, x− x∗〉.

Due to the weak convergence we know that

−2〈xδn
αn
− x∗, x− x∗〉 → −2‖x− x∗‖2.

Moreover, we have concluded above that

lim sup
n
‖xδn

αn
− x∗‖2 ≤ ‖x− x∗‖2,

and thus,
lim sup

n
‖xδn

αn
− x‖2 ≤ ‖x− x∗‖2 + ‖x− x∗‖2 − 2‖x− x∗‖2 = 0,

which implies the strong convergence.
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Note that the convergence prove applies only to situations where the data y are attainable,
i.e., F (x†) = y. If ‖F (x†)− y‖ > 0 a slightly different proof under changed conditions on the
parameter choice has to be carried out, we refer to [5] for further details.

We finally consider convergence rates in the nonlinear setting. For the sake of simplicity
we restrict our attention to the case corresponding to µ = 1

2 for the linear problem. In this
case, the source condition x† = (A∗A)(1/2)w is equivalent to x† = A∗p for

p =
∞∑

n=1

〈w, un〉vn ∈ Y.

The condition x† = A∗p is easier to interpret from an optimization point of view. A mininum
norm solution x† is determined as a minimizer of the constrained problem

1
2
‖x‖2 → min

x∈X
, subject to Ax = y,

and it is natural to consider the associated Lagrangian

L(x; p) :=
1
2
‖x‖2 − 〈Ax, y〉.

It is easy to see that for (x†, p) being a stationary point of the Lagrangian, x† is a solution
of the above constrained problem, i.e., a minimum norm solution. In the case of an ill-
posed operator equation, the converse does not hold, since the constraint operator A∗ is not
surjective. Hence, the existence of a Lagrange multiplier is an additional smoothness condition
on the exact solution x†. Since we always have ∂

∂pL(x†; p) = Ax† − y = 0, it is clear that a
stationary point p exists if and only if

0 =
∂

∂x
L(x†; p) = x−A∗p,

i.e., if and only if the source condition is satisfied.
Again, the optimization viewpoint allows an immediate generalization to the nonlinear

case, where the Lagrangian is given by

L(x; p) =
1
2
‖x− x∗‖2〈F (x)− y, p〉.

Thus, the source condition becomes

0 =
∂

∂x
L(x†; p) = x† − x∗ − F ′(x†)∗p,

i.e.,
∃ p ∈ Y : x† − x∗ = F ′(x†)∗p. (3.10)

In order to prove a convergence rate we also assume that F ′ is Lipschitz continuous with
module L and that the smallness condition

L‖p‖ < 1 (3.11)

holds.
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Theorem 3.6. In addition to the assumptions of Theorem 3.5 assume that (3.10) and (3.11)
hold. Moreover, if α(δ, yδ) ∼ δ, there exists δ0 > 0, such that for all δ < δ0 the estimate

‖xδ
α − x†‖ ≤ c

√
δ (3.12)

holds for some constant c > 0.

Proof. Since xδ
α minimizes Jα we obtain

‖F (xδ
α)− yδ)‖2 + α‖xδ

α − x∗‖2 ≤ δ2 + α‖x† − x∗‖2

and after a simple calculation, this inequality can be rewritten as

‖F (xδ
α)− yδ)‖2 + α‖xδ

α − x†‖2 ≤ δ2 + 2α〈x† − x∗, x† − xδ
α〉. (3.13)

Now we insert the source condition (3.10) into the last term on the right-hand side to obtain

−2α〈x† − x∗, x† − xδ
α〉 = 2α〈p, F ′(x†)(xδ

α − x†)〉.
From a Taylor-expansion we obtain that

F ′(x†)(xδ
α − x†)〉 = F (xδ

α)− F (x†) + rδ
α,

and due to the Lipschitz continuity of F ′ we have

‖rδ
α‖ ≤

L

2
‖xδ

α − x†‖2.

Hence, we may estimate

2α‖〈p, F ′(x†)(xδ
α − x†)〉‖ ≤ 2α‖p‖‖F (xδ

α)− F (x†)‖+ αL‖p‖‖xδ
α − x†‖2.

Combining this estimate with (3.13) we deduce

‖F (xδ
α)−yδ)‖2+α(1−L‖p‖)‖xδ

α−x†‖2 ≤ δ2+2α‖p‖‖F (xδ
α)−y‖ ≤ δ2+2α‖p‖(‖F (xδ

α)−yδ‖+δ),

or, rewritten

1
α

(‖F (xδ
α)− yδ)‖ − α‖p‖)2 + (1− L‖p‖)‖xδ

α − x†‖2 ≤ δ2

α
+ α‖p‖2 + 2δ‖p‖.

If c1δ ≤ α ≤ c2δ, we obtain (using nonnegativity of the first term on the left-hand side)

(1− L‖p‖)‖xδ
α − x†‖2 ≤ δ

c1
+ c2δ‖p‖2 + 2δ‖p‖,

and hence, (3.12) holds with

c =

√
1 + c1c2‖p‖2 + 2c1‖p‖

c1(1− L‖p‖) .

We finally mention that a general source condition can be generalized to

∃ p ∈ Y : x† − x∗ = (F ′(x†)∗F ′(x†))µp, (3.14)

and analogous convergence rate results to the linear case can be shown.
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3.2 Construction of Tikhonov-type Regularization Methods

The idea of Tikhonov regularization can easily be generalized with respect to the choice of a
regularization functional. With a nonnegative functional JR : X → R one could consider a
“Tikhonov-type” regularization via

xδ
α ∈ arg min

x∈X

[
‖F (x)− yδ‖2 + αJR(x)

]
. (3.15)

Such a method is a regularization if the regularization functional JR has a suitable properties.
In particular, if JR is weakly lower semicontinuous in some topology T , i.e.,

JR(x) ≤ lim inf
n

JR(xn) ∀ xn →T x,

and if the sub level sets of JR are precompact in the topology T , the results on existence,
stability, and convergence for Tikhonov regularization can be carried over to (3.15) with minor
modifications of the proofs, when convergence is considered with respect to the topology T .
Since the topology T need not correspond to the strong or weak topology in a Hilbert space,
one can carry out regularization via (3.15) also if X is a metric space. We shall meet this
situation for two Banach spaces in the Sections below and for a metric space of shapes in the
last chapter.

From this generalization one observes that the main regularizing effect of Tikhonov regu-
larization comes from the fact that the sub level sets of the functional

Jα(x) = ‖F (x)− yδ‖2 + αJR(x)

are precompact in the topology T , i.e., the regularization acts by compactification. In the case
of a Hilbert space, the natural choice for the topology T is the weak topology, the fact that
one finally even obtains strong convergence is a particularity. In a similar setup for Banach
spaces one cannot expect strong convergence, as we shall see for total variation regularization
below.

3.3 Maximum-Entropy Regularization

Maximum entropy regularization is a method of particular interest for the reconstruction of
probability density functions, i.e., functions in the space

BDF (Ω) := {x ∈ L1(Ω) | x ≥ 0,

∫

Ω
x(t) dt = 1}.

The (negative) entropy borrowed from physics and information theory is defined as the func-
tional

E(x) :=
∫

Ω
x(t) log x(t) dt, ∀x ∈ L1(Ω), x ≥ 0,

∫

Ω
x(t) dt = 1. (3.16)

For a continuous operator F : L1(Ω) → Y with Y being some Hilbert space, we can consider
the regularized problem

‖F (x)− y‖2 + αE(x) → min
x∈PDF (Ω)

. (3.17)
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The convergence analysis of maximum entropy regularization (cf. [11, 14]) can be related
to the one for Tihonov regularization in Hilbert space with a simple trick: one can find a
monotone function ψ : R+ → R such that

E(x) =
∫

Ω
x(t) log x(t) dt =

∫

Ω
ψ(x(t))2 dx.

Hence, with the operator

Ψ : L2(Ω) → L1(Ω), z 7→ ψ−1(z),

can be rewritten as
‖F (Ψ(z))− y‖2 + α

∫

Ω
z(t)2 dt → min

z∈L2(Ω)
.

With suitable assumptions on the solution and the admissible set, one can verify that the
new nonlinear operator F ◦ Φ : L2(Ω) → Y satisfies all needed properties for Tikhonov
regularization and thus, the convergence (rate) analysis can be carried over, we refer to [14]
for further details.

If a prior x∗ ∈ PDF (Ω) is available, then one often uses the relative entropy (or Kullback-
Leibler divergence)

E∗(x) :=
∫

Ω
x(t) log

x(t)
x∗(t)

dt, ∀x ∈ L1(Ω), x ≥ 0,

∫

Ω
x(t) dt = 1, (3.18)

the convergence analysis in this case is similar.

3.4 Total Variation Regularization

Total variation regularization is an approach originally introduced for image restoration (cf.
[23]) with the aim of preserving edges in the image, i.e., discontinuities in the solution. For-
mally the total variation functional can be defined as

|u|TV =
∫

Ω
|∇u| dt, u ∈ C1(Ω).

A more rigorous definition is based on the dual form

|u|TV := sup
g∈C∞0 (Ω)d

∫

Ω
u div g dt. (3.19)

The general definition of the space of functions of bounded variation BV (Ω) is

BV (Ω) := { u ∈ L1(Ω) | |u|TV < ∞ }.
With this definition, the space BV (Ω) includes also discontinuous functions. Consider e.g.
Ω = [−1, 1] and, for R < 1,

uR(x) =
{

1 if |x| ≤ R
0 else.

Then, ∫

Ω
u div g dt =

∫ R

−R

dg

dt
dt = g(R)− g(−R).
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For ‖g‖∞ ≤ 1, we have g(R) − g(−R) ≤ 2 and it is easy to construct a function g ∈
C0∞([−1, 1]) such that g(R) = 1, g(−R) = −1 and ‖g‖∞ ≤ 1. Hence,

|u|TV := sup
g∈C∞0 ([−1,1])

[g(R)− g(−R)] = 2.

In general, for a function u being equal to 1 in D ⊂⊂ Ω and u = 0 else, the total variation
|u|TV equals the surface area (or curve length) of ∂D.

Total variation regularization is defined via the minimization problem

‖F (u)− y‖2 + α|u|TV → min
u∈BV (Ω)

.

The convergence analysis (cf. [1]) is based on the compact embedding BV (Ω) ↪→ Lp(Ω),
where p > 1 depends on the spatial dimension d. One can use this property to deduce that
sub level sets of the regularized functional are compact in the strong topology of Lp(Ω), and if
F is weakly sequentially closed in this topology, one can carry out an analogous convergence
proof as for Tikhonov regularization.

In order to obtain further insight, we consider the formal optimality condition in the
case F = Id : BV (Ω) → L2(Ω), i.e., the classical case of denoising considered in [23]. By
differentiating formally, we have

u− yδ = αdiv
( ∇u

|∇u|
)

.

If u is a continuously differentiable function, the term div
(
∇u
|∇u|

)
is equal to the mean cur-

vature of the level sets {u = σ}, σ ∈ R. Hence, the optimality condition is a condition on the
smoothness of the level sets only, there is no condition on the size of |∇u|.

Again by formal arguments, we can derive a dual problem for total variation minimization.
Consider again the denoising case F = Id : BV (Ω) → L2(Ω), then the minimization problem
to solve is

inf
u

[∫

Ω
(u− yδ)2 dt + α|u|TV

]
= inf

u
sup
g

[∫

Ω
(u− yδ)2 dt + 2α

∫

Ω
u div g dt.

]

Under the assumption that we can exchange the inf and sup (in a suitable function space
setting), then we obtain

sup
g

inf
u

[∫

Ω
(u− yδ)2 dt + 2α

∫

Ω
u div g dt.

]

The minimization over u is a strictly convex problem and its unique minimizer can be com-
puted from the first-order optimality conditon as

u = yδ − α div g.

Hence, after eliminating u we end up with the maximization problem

sup
g

[
α2

∫

Ω
( div g)2 dt + 2α

∫

Ω
(yδ − α div g) div g dt

]
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Since we can add constant terms without changing the maximizer, the problem is equivalent
to

−
∫

Ω
(α div g − yδ)2 dx → max

|g|∞≤1
.

Now let p := αg, then we end up with (using the fact that maximization of a functional is
equivalent to minimization of the negative functional)

∫

Ω
( div p− yδ)2 dt → min

|p|∞≤α
. (3.20)

The minimization problem (3.20) is the dual problem of the total variation regularization, if
we have computed a solution p, then the primal solution can be computed as u = yδ− div p.

Motivated from the dual problem we can also consider the dual space of BV, namely

BV ∗ := { q = div p | p ∈ L∞(Ω) }

with the dual norm
‖q‖BV ∗ := inf{‖p‖∞ | q = div p}.

Note that (3.20) has the structure of a projection, namely it projects yδ to the ball of radius
α in the dual space BV ∗.

The dual problem also allows further insight into the so-called stair-casing phenomenon,
i.e., the fact that the total variation regularization favours piecewise constant regularized
solutions. Consider for simplicity the one-dimensional case and let df

dx = yδ. Then, with
q = p− f , the dual problem can be rewritten as

∫

Ω

(
dq

dt

)2

dt → min subject to − α ≤ q + f ≤ −α. (3.21)

Consider formally the associated Lagrangian

L(q;λ, µ) =
∫

Ω

[(
dq

dt

)2

+ λ(q + f − α)− µ(q + f + α)

]
dt

for positive functions λ and µ. Then the optimality condition becomes

−2
d2q

dt2
+ λ− µ = 0

and moreover, the constraints

λ ≥ 0, µ ≥ 0, −α ≤ q + f ≤ α

and the complementarity conditions

λ(q + f − α) = 0, µ(q + f + α) = 0.

Thus, we have three cases:

1. q(t) + f(t) = α, which implies that µ(t) = 0 and 2d2q
dt2

= λ(t) ≥ 0.
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2. q(t) + f(t) = −α, which implies that λ(t) = 0 and 2d2q
dt2

= −µ(t) ≤ 0.

3. q(t) + f(t) /∈ {α,−α}, which implies λ(t) = µ(t) = 0, and hence, d2q
dt2

(t) = 0.

Note that the third case shows that q is linear in regions where q + f /∈ {α,−α} and hence,
u = −dq

dt is constant.
If yδ is a piecewise constant function, then f is piecewise linear and thus, the cases 1. and

2. imply that q = ±α− f is piecewise linear in the respective subregions, and thus, u = −dq
dt

is piecewise constant. This means that, together with case 3., u must be a piecewise constant
function. Consider for example the special case

yδ(x) =
{

1 if |x| ≤ R
0 else.

with 0 < α < R < 1. By a simple integration we obtain the anti-derivative

f(x) =




−R if x ≤ −R
x if −R ≤ x ≤ R
R if x ≥ R

Thus, the dual problem becomes
∫

Ω

(
dq

dt

)2

dt → min

subject to
−α ≤ q −R ≤ α if x ≤ −R
−α ≤ q + x ≤ α if −R ≤ x ≤ R
−α ≤ q + R ≤ α if x ≥ R

.

Now let

q(x) =





R− α if x ≤ −R
α−R

R x if −R ≤ x ≤ R
α−R if x ≥ R

,

Then q satisfies the constraints and
∫

Ω

(
dq

dt

)2

dt =
2(R− α)2

R
.

Moreover, for arbitrary q satisfying the constraints we obtain

(R− α)− (α−R) ≤ q(−R)− q(R) = −
∫ R

−R

dq

dt
dt

Hence, from the Cauchy-Schwarz inequality we deduce
∫

Ω

(
dq

dt

)2

dt ≥
∫ R

−R

(
dq

dt

)2

dt ≥ 1
2R

(∫ R

−R

(
dq

dt

)
dt

)2

≥ 2(R− α)2

2R
.

This shows that q is a minimizer of the dual problem and consequently, the regularized solution
is given by

u(x) = −dq

dx
=





0 if x ≤ −R
1− α

R if −R ≤ x ≤ R
0 if x ≥ R

23



Thus, the regularized solution is discontinuous and even has the same discontinuity set as
the data, but shrinks the height (in a monotone way with α). It is easy to see by analogous
reasoning that for R < α, the regularized solution is u ≡ 0, i.e., α marks a critical size below
which features in the solution will be eliminated. Since such small features are usually due
to noise, so the regularization eliminates really parts that one would consider to be noise but
maintains important discontinuities. A nice detailed discussion of the properties of solutions
in total variation regularization can be found in the book by Meyer [21].
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Chapter 4

Parameter Identification

In the following we discuss parameter identification problems in further detail, in particular
their numerical solution. In the introductory examples of parameter identification we have
observed a particular property of such problems, namely two types of unknowns, the parameter
a and the state u. Parameter and state are linked via an equation, which we formally write
as

e(u; a) = 0, e : X ×Q → Z, . (4.1)

for Hilbert space X, Q, and Z. The equation (4.1), which usually represents a system of
partial differential equations, is called state equation. The solution of the state equation for
given a can be interpreted as the direct problem. In typical examples it is reasonable to
assume that e is continuously Frechet differentiable and ∂e

∂u(u; a) : X → Z is a continuous
linear operator with continuous inverse. Hence, by the implicit function theorem we can
conclude that (4.1) has a unique solution u = u(a). It is therefore possible to introduce a
well-defined operator

Φ : Q → X, a 7→ u(a) solving (4.1).

Φ is called parameter-to-solution map.
The data are related to the state in most examples via a linear observation operator

B : X → Y , such that y = Bu. The observation operator could either be the identity
(distributed measurement), a restriction operator to part of the domain (partial distributed
measurements), a trace operator to boundary values of the solution (boundary measurements),
or a trace operator to final values of a solution in a time-dependent problem. By employing the
parameter-to-solution map, we can also define a nonlinear operator F := B ◦Φ : Q → Y and
formulate the parameter-identification problem in a standard way as the nonlinear operator
equation

F (a) = y. (4.2)

If the operator F is injective, then the parameter a is identifiable.
In the case of noisy data, one has several possibilities of a least-squares formulation for

the problem. The most frequently used one is the output least-squares formulation

‖F (a)− yδ‖2 → min
a∈Q

. (4.3)

This formulation is equivalent to the constrained problem

‖Bu− yδ‖2 → min
(u,a)∈X×Q

subject to e(u; a) = 0. (4.4)
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If we interpret the parameter identification problem as the coupled system

Bu = y, e(u; a) = 0

instead, we could also consider the total least-squares formulation

‖Bu− yδ‖2 + ‖e(u; a)‖2 → min
(u,a)∈X×Q

. (4.5)

The nonlinear operator used in the total least-squares approach is defined on the product
space as F̃ := (B, e) : X ×Q → Y × Z.

4.1 Derivatives and the Adjoint Method

For typical numerical solution methods one always needs to compute derivatives of the non-
linear operator F or F̃ and the associated least-squares functionals, respectively.

Using the chain rule and the linearity of the observation operator we obtain that

F ′(a) = B ◦ Φ′(a),

and since e(Φ(a), a) = 0 we have

∂e

∂u
(Φ(a), a)Φ′(a) +

∂e

∂a
(Φ(a), a) = 0,

i.e., since we have assumed that ∂e
∂u is regular,

Φ′(a) = − ∂e

∂u
(Φ(a), a)−1 ∂e

∂a
(Φ(a); a).

Altogether, the derivative of the operator F is given by

F ′(a) = −B ◦ ∂e

∂u
(Φ(a); a)−1 ◦ ∂e

∂a
(Φ(a); a).

Hence, in order to evaluate the directional derivative F ′(a)h, we have to solve the linearized
problem

∂e

∂u
(Φ(a); a)[Φ′(a)h] +

∂e

∂a
(Φ(a); a)h = 0 (4.6)

and then apply the observation operator to the solution. Note that the linearized problem
(4.6) is a system of (linear) differential equations. Consider for example X = H1

0 (Ω), Z =
H−1(Ω) and

e(u; a) := − div (a∇u)− f, B = Id : H1
0 (Ω) → L2(Ω), (4.7)

then the derivatives are given by

∂e

∂u
(u; a)v = −div (a∇v),

∂e

∂a
(u; a)h = −div (h∇u).

Hence, the linearized problem is the solution of the linear partial differential equation

−div (a∇v) = div (h∇u),
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and its solution is equal to Φ′(a)h = v. Thus, in order to compute a directional derivative,
one has to solve a linear partial differential equation. In order to compute the full Frechet
derivative F ′(a) one has to solve an equation for each h.

With the formula for F ′(a) it is easy to compute the derivative of the output least-squares
functional

JO(a) := ‖F (a)− yδ‖2

as

J ′O(a)h = 2〈F (a)− yδ, F ′(a)h〉 = 2〈F ′(a)∗(F (a)− yδ), h〉
= −2〈∂e

∂a
(Φ(a); a)∗(

∂e

∂u
(Φ(a); a)∗)−1B∗(F (a)− yδ), h〉.

Hence,

J ′O(a)h = −2
∂e

∂a
(Φ(a); a)∗(

∂e

∂u
(Φ(a); a)∗)−1(F (a)− yδ).

Using this formula involving the adjoints of the derivatives of e, we can directly compute the
gradient of the functional JO as J ′O(a) = −2 ∂e

∂a(Φ(a); a)∗w, where w is the solution of the
adjoint equation

∂e

∂u
(Φ(a); a)∗w = F (a)− yδ.

For example (4.7) with X = H1
0 (Ω) we can compute the adjoint via

〈 ∂e

∂u
(u; a)v, w〉 = −

∫

Ω
div (a∇v)w dx

=
∫

Ω
a∇v · ∇w dx = −

∫

Ω
div (a∇w)v dx

= 〈v,
∂e

∂u
(u; a)∗w〉.

Thus, the adjoint equation is the linear partial differential equation

− div (a∇w) = u− yδ. (4.8)

For complicated parameter identification problems, the direct computation of the adjoint
is rather involved. An attractive alternative is a computation via the derivatives of the
Lagrangian

L(u, a, w) := ‖Bu− yδ‖2 + 〈e(u; a), w〉. (4.9)

It is easy to see that

∂L
∂u

(u, a, w) = 2B∗(Bu− yδ) +
∂e

∂u
(u; a)∗w

∂L
∂a

(u, a, w) =
∂e

∂a
(u; a)∗w

∂L
∂w

(u, a, w) = e(u; a).
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Thus, for given a ∈ Q, the solution u ∈ X of ∂L
∂w (u, a, w) = 0 equals Φ(a). Let, for given u

and a, w be the solution of ∂L
∂u (u, a, w) = 0, then

∂L
∂a

(u, a, w) =
∂e

∂a
(Φ(a); a)∗w

= −2
∂e

∂a
(Φ(a); a)∗(

∂e

∂u
(Φ(a); a)∗)−1B∗(BΦ(a)− yδ)

= F ′(a)∗(F (a)− yδ).

Hence, we can compute the derivative of the least-squares functional directly from the La-
grangian by subsequently solving the equations ∂L

∂w = 0, ∂L
∂u = 0 and evaluating ∂L

∂a .
In an analogous way we can compute derivatives of the operator F̃ as

∂F̃

∂u
(u, a) = (B,

∂e

∂u
(u; a)),

∂F̃

∂a
(u, a) = (0,

∂e

∂a
(u; a)).

The derivative of the total least-squares functional

JT (u; a) = ‖F̃ (u; a)− (yδ, 0)‖2 = ‖Bu− yδ‖2 + ‖e(u; a)‖2

is given by

J ′T (u; a)(v, h) = 2〈Bv, Bu− yδ〉+ 2〈 ∂e

∂u
(u; a)v; e(u; a)〉+ 2〈∂e

∂a
(u; a)v; e(u; a)〉.

The terms involved in the computation of the derivative J ′T are again the same as appearing
in the derivative of J ′O.

4.2 Regularization

Under usual assumptions, one has to expect that a parameter identification problem is ill-
posed (and most parameter identification problems are actually ill-posed). Therefore it is a
natural first step to investigate the regularization of parameter identification problems. For
this sake one needs to understand on which variable the regularization should act. From the
viewpoint of (4.2) and (4.3) it seems clear that any regularization method for nonlinear ill-
posed problems can be applied directly, with regularization acting on the only variable a ∈ Q.
For the formulation (4.5) it is not obvious whether one should also incorporate regularization
on u. However, it can be shown that such an additional regularization is not necessary due to
the inherent well-posedness of the problem (respectively equation (4.1)) with respect to the
state u.

Tikhonov Regularization

We start with the investigation of Tikhonov regularization. From (4.3), we arrive at the
regularized problem

‖F (a)− yδ‖2 + α‖a− a∗‖2 → min
a∈Q

, (4.10)
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or, equivalently,

‖Bu− yδ‖2 + α‖a− a∗‖2 → min
(u,a)∈X×Q

subject to e(u; a) = 0. (4.11)

The condition of weak sequential closedness of the operator F needed for the analysis of
Tikhonov regularization is equivalent to the weak sequential closedness of the parameter-to-
solution map Φ, because the continuous linear observation operator will preserve this property.

The Tikhonov regularization of the total least-squares formulation (4.5) is

‖Bu− yδ‖2 + ‖e(u; a)‖2 + α‖a− a∗‖2 → min
(u,a)∈X×Q

. (4.12)

The condition of weak sequential closedness of the operator F̃ := (B, e) : X × Q → Y × Z
is equivalent to weak sequential closedness of the equation operator e. A possible advantage
of the output least-squares formulation is a natural way of dealing with perturbations in the
equation. If, instead of e(u, a), a perturbation e(u, a) + f δ with ‖f δ‖ ≤ δ is given, we can
analyze convergence in the same way as for standard regularization.

In order to gain some insight into the structure of the regularized problem, we consider
the example (4.7). For simplicity we consider a−a∗ ∈ H1

0 (Ω) (which is indeed a regularization
for d = 1) with the norm

‖b‖H1
0

:=

√∫

Ω
|∇b|2 dt.

The output least-squares formulation is equivalent to
∫

Ω
(u− yδ)2 dt + α

∫

Ω
|∇a−∇a∗|2 dt → min

(u,a)∈H1
0 (Ω)×H1

0 (Ω)

subject to − div (a∇u) = f in Ω.

Every global minimizer of the Tikhonov functional is also a saddle-point of the Lagrangian

Lα(u, a, w) =
∫

Ω
(u− yδ)2 dt + α

∫

Ω
|∇a−∇a∗|2 dt +

∫

Ω
(a∇u · ∇w − fw) dt, (4.13)

where we have used Gauss’ Theorem to convert the state equation to its weak form. Thus,
the optimality condition becomes

0 =
∂Lα

∂a
(u, a, w) = −2α div (∇(a− a∗)) +∇u · ∇w,

0 =
∂Lα

∂u
(u, a, w) = − div (a∇w) + 2(u− yδ),

0 =
∂Lα

∂w
(u, a, w) = − div (a∇u)− f.

Thus, the regularized solution can (at least in principle) be computed as the solution of a
system of partial differential equations.
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Total Variation Regularization

In several applications, the unknown parameter can be modeled as a piecewise constant func-
tion, but with unkown function values and unknown discontinuity sets. An example is the
reconstruction of material parameters on domains that consist of a mixture of different mate-
rials (and each material is characterized by a specific scalar value). Under these conditions it
is natural to use total variation regularization for the parameter identification problem, i.e.,
to minimize,

‖F (a)− yδ‖2 + α|a|TV → min
a∈Q

, (4.14)

As we have seen above, the total variation functional favours piecewise constant solutions and
the discontinuity set of the exact parameter is approximated well by the regularized solution.

Iterative Regularization by the Landweber Method

The simplest iterative regularization method, namely Landweber iteration, is given in the
abstract setting as

ak+1 = ak − τkF ′(ak)∗(F (ak)− yδ).

In terms of the funcional JO and the associated Lagrangian we can rewrite the iteration as

ak+1 = ak − τk

2
J ′O(ak) = ak − τk

2
∂L
∂a

(uk, ak, wk),

for a suitable damping parameter τk > 0, where uk = Φ(ak) is determined as the solution of

∂L
∂w

(uk, ak, wk) = e(uk; ak)

and subsequently wk as the solution of

∂L
∂u

(uk, ak, wk) = 2B∗(Buk − yδ) +
∂e

∂u
(uk; ak)∗wk = 0.

Hence, the computation of one iteration step of the Landweber iteration consists of three
parts: First of all, given ak the state equation is solved to compute uk, then the adjoint
equation is solved to compute wk and finally, ∂L

∂a (uk, ak, wk) = ∂e
∂a(uk, ak)∗wk is evaluated to

determine the update in the iteration procedure.
We again take a closer look at the iteration procedure for (4.7). The Lagrangian is given

by

L(u, a, w) =
∫

Ω
(u− yδ)2 dt +

∫

Ω
a∇u · ∇w dt, (4.15)

and hence, in order to compute the update we have to solve the partial differential equations

0 =
∂Lα

∂w
(uk, ak, wk) = − div (ak∇uk)− f

0 =
∂Lα

∂u
(uk, ak, wk) = − div (ak∇wk) + 2(uk − yδ).

The update formula has to be carried out in the Hilbert space H1
0 (Ω), i.e., in weak form we

have

〈ak+1 − ak, ϕ〉 = −τk

2
J ′O(ak)ϕ, ∀ ϕ ∈ H1

0 (Ω).
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If we choose the same scalar product as above, then

〈ak+1 − ak, ϕ〉 =
∫

Ω
∇(ak+1 − ak) · ∇ϕ dt = −

∫

Ω
ϕ div ∇(ak+1 − ak) dt.

Hence, the update involves the solution of another partial differential equation of the form

− div ∇(ak+1 − ak) = −τk

2
∇uk · ∇wk.

Note that once the gradient is known, it is also easy to use a quasi-Newton approach such
as BFGS with little extra effort.

Iterative Regularization by the Levenberg-Marquardt Method

The last regularization approach we discuss is the Levenberg-Marquardt method, where the
iterates are computed from

(F ′(ak)∗F ′(ak) + αkI)(ak+1 − ak) = −F ′(ak)∗(F (ak)− yδ),

which is equivalent to the minimization problem

Jk(a) := ‖F (ak)− yδ + F ′(ak)(a− ak)‖2 + αk‖a− ak‖2 → min
a∈Q

.

This minimization is equivalent to

‖Buk − yδ + Bv‖2 + αk‖a− ak‖2 → min
(v,a)∈X×Q

subject to
∂e

∂u
(uk; ak)v +

∂e

∂a
(uk; ak)(a− ak) = 0,

where uk = Φ(ak) The optimality condition for this constrained problem are given by the
system

0 = 2αk(ak+1 − ak) +
∂e

∂a
(uk; ak)∗wk

0 = 2B∗(Buk − yδ + Bvk) +
∂e

∂a
(uk; ak)∗wk

0 =
∂e

∂u
(uk; ak)vk +

∂e

∂a
(uk; ak)(ak+1 − ak)

to be solved for ak+1 ∈ Q, vk ∈ X, wk ∈ Z. Hence, the realization of the Levenberg-
Marquardt method enforces the solution of a linear system of differential equations, which is
close to the linearization of the optimality conditions for Tikhonov regularization.

4.3 Large Scale Problems

We finally discuss the solution of large scale problems such as the examples of electrical
impedance tomography and inverse scattering discussed before. In theory, one assumes to
measure the full Dirichlet-to-Neumann map or the full far-field pattern, but in practice one
clearly can measure only a finite number of evaluations of the maps. E.g., in impedance
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tomography, it is reasonable to measure Λa(fj) for j = 1, . . . , N , and N being a very large
number. This means we have to solve N state equations

− div (a∇uj) = 0

with boundary values uj = fj .
The general form corresponding to such a case is a state u = (u1, . . . , uN ) with state

equation
e(u; a) = (e1(u1; a), . . . , eN (uN ; a)) = 0 (4.16)

and observation operator
Bu = (B1u

1, . . . , BNuN ). (4.17)

The derivative of the associated output least-squares functional in this case can be computed
again by the adjoint method, but since uj only appears in the j-th equation we obtain a very
peculiar structure. It is easy to see that

F ′(a)∗(F (a)− yδ) =
N∑

j=1

∂ej

∂a
(uj ; a)∗wj ,

where the adjoint state is the solution of

∂ej

∂u
(uj ; a)∗wj + B∗

j (Bju
j − yδ

j ) = 0.

and the state is just determined from ej(uj ; a) = 0.
The special structure of the derivative can be used to compute gradients with reasonable

memory consumption. Note that if N is large and the discretization is fine, the unknowns for
the state variables uj and the adjoint states wj may produce a very high number of unknowns.
Therefore, it seems advantageous not to compute and store all of them at the same time, but
to compute them in a sequential way (or separately distributed on several processors). Such
a computation is easy from the above form of the gradient, we start with g0 := 0 and then
use the recursion

gj := gj−1 +
∂ej

∂a
(uj ; a)∗wj , j = 1, . . . , N,

with states and adjoint states uj and wj as above. In this way we only need the memory for
u1 and w1, which can later be used for uj and wj subsequently.

With this way of computing the gradient it is straight-forward to realize the Landweber
iteration, with the setting ak,0 = ak we compute

ak,j = ak,j−1 + τ j ∂ej

∂a
(uk,j ; ak)∗wk,j , j = 1, . . . , N

to obtain the new iterate ak+1 = ak,N . Here uk,j and wk,j are the solutions of

e(uk,j ; ak) = 0,
∂ej

∂u
(uk,j ; ak)∗wk,j + B∗

j (Bju
k,j − yδ

j ) = 0.

Instead of the additive splitting in the computation of the update ak+1 one could also use a
multiplicative splitting, i.e.,

ak,j = ak,j−1 + τ j ∂ej

∂a
(uj ; ak,j−1)∗wj , j = 1, . . . , N
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now with uk,j and wk,j being the solutions of

e(uk,j ; ak,j−1) = 0,
∂ej

∂u
(uk,j ; ak,j−1)∗wk,j + B∗

j (Bju
k,j − yδ

j ) = 0.

This approach is called Landweber-Kaczmarz method (cf. [19]), for some practical problems
one observes even better convergence properties for this method than for the simple Landwe-
ber iteration. We mention that the relation between Landweber and Landweber-Kaczmarz is
of the same type as between Jacobi and Gauss-Seidel iteration for linear systems.

The Kaczmarz-type approach also offers the possibility to perform Newton-type methods
with reasonable memory consumption, for example one can perform a Levenberg-Marquardt
type approach by freezing uk,m for m 6= j and coupling the iterations in a cyclic way (cf. [6]).
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Chapter 5

Shape Reconstruction Problems

In this section we shall deal with the solution of parameter identification problems, where the
unknown variable is a shape or geometry in Rd. Shapes can be considered as sets with regular
boundary and therefore we may perform standard set operations like unions or intersections.
However, there is no way to make a class of shapes into a linear space in general, but only
with severe restrictions. An obvious way of solving a problem in a linear space instead of a
problem on a class of shapes is to use parametrization (e.g. as piecewise graphs, by polar
coordinates, or locally around a given shape). Since the parametrization is usually represented
by a function on a fixed set, one can just minimize over all such functions in an appropriate
Hilbert or Banach space. This allows to use standard methods as discussed above, but strongly
limits the class of admissible shapes.

5.1 Shape Sensitivity Analysis

The main idea of shape sensitivity analysis is to consider ”natural deformations” of shapes
and inspect the corresponding variations of the objective functional. The general setup in the
following is the minimization of

J(Ω) → min
Ω∈K

,

where K is a suitable class of compact subsets of Rd, with regular boundary.
There are two different ways of deriving shape sensitivities (both leading to the same

result), namely via ”direct deformations” or via the ”speed method”. We shall follow the
latter, since this approach fits very well to the level set method, which we will discuss below
as a possible solution method for shape optimization problems. For a detailed discussion of
shape derivatives we refer to [10].

Before considering shapes we illustrate the idea of the speed method when applied to
Gateaux-derivatives in linear spaces. In order to compute the directional derivative of a
functional J : U → R, we have so far considered the variation between the values of J at
u ∈ U and at its local deformation u + tv. Alternatively, we could define u(t) = u + tv by

du

dt
= v, u(0) = u,

which is an initial value problem for an ordinary differential equation in U . Using the chain
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rule, we can then compute

d

dt
J(u(t)) = J ′(u(t))

du

dt
= J ′(u(t))v.

In particular,
d

dt
J(u(t))

∣∣∣
t=0

= J ′(u)v,

i.e., we obtain the directional derivative at u by evaluating the time derivative of J(u(t)) at
time t = 0.

In a similar way, we can define derivatives of shapes. Let V : Rd → Rd be a given velocity
field and define x(t) via

dx

dt
(t) = V (x(t)), x(0) = x, (5.1)

for each x ∈ Rd. We can then define the shape sensitivity

dJ(Ω;V ) :=
(

d

dt
J(Ω(t))

) ∣∣∣
t=0

,

where
Ω(t) = {x(t) | x(0) ∈ Ω}.

Note that the main difference to derivatives in linear spaces is that the deformation defined
by the ODE (5.1) is nonlinear, since V depends on x itself.

We start with some examples. Let g : Rd → R be a continuously differentiable function
and define

J(Ω) :=
∫

Ω
g(x) dx.

Then, by change of variables

J(Ω(t)) =
∫

Ω(t)
g(x) dx

=
∫

Ω
g(xy(t))|My| dy

where xy(t) is defined by

dxy

dt
(t) = V (xy, t), xy(0) = y ∈ Ω

and My = det ∂xy

∂y . Hence, the time derivative can be computed as

d

dt
J(Ω(t)) =

∫

Ω
v∇g(xy)

∂xy

∂t
|My| dy +

∫

Ω
g(xy)

∂My

∂t My

|My| dy.
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For the derivative of the determinant we have

∂My

∂t
=

∂

∂t


 ∑

(i1,...id)∈Π(d)

(−1)i1+...+id

d∏

k=1

∂(xy)k

∂yik




=


 ∑

(ik)∈Π(d)

(−1)
∑

ik
∑

j

∂2(xy)j

∂yij∂t

d∏

l 6=j

∂(xy)l

∂yil




=
∑

(ik)∈Π(d)

(−1)
∑

ik
∑

j

∂Vj

∂yij

d∏

l 6=j

∂(xy)l

∂yil

For t = 0, we have ∂xy

∂y = I, My = 1, and this implies

∂My

∂t
=

∑

j

∂Vj

∂yj
= div (V )

As a consequence, we have

d

dt
J(Ω(t))

∣∣∣
t=0

=
∫

Ω

(
∇g(xy)

∂xy

∂t

) ∣∣∣
t=0

dy +
∫

Ω

(
g(xy) div V (xy)

)∣∣∣
t=0

dy

=
∫

Ω

(
∇g(y)V (y) + g(y) div V (y)

)
dy

=
∫

Ω
div

(
g(y)V (y)

)
dy

=
∫

∂Ω
g(y)V (y).n ds,

where n denotes the unit outer normal on ∂Ω. I.e., the shape sensitivity is a linear functional
fo V concentrated on ∂Ω. Another key oberservation is that the shape sensitivity J ′(Ω)V :=
d
dtJ(Ω(t))|t=0 depends on V.n|∂Ω only, while it is completely independent of the values for V
inside Ω and of its tangential component. Consequently, we may directly consider variations
of ∂Ω with a velocity V = Vn.n, where Vn is a scalar speed function. The shape sensitivity
then becomes

J ′(Ω)Vn =
∫

∂Ω
g.Vn ds.

The statement that the shape sensitivity is a linear functional of V.n only holds for very
general classes of objective functionals, it is usually known as the ”Hadamard-Zolésio Struc-
ture Theorem”. The independence of the shape sensitivity on tangential components is clear
from geometric intuition, since those components correspond to a change of parametrization
only. The independence on values of V in the interior of Ω seems obvious, too, since they do
not change the domain of integration in the objective functional.

In most typical applications of shape optimization, the objective functional depends on a
state variable u that satisfies a partial differential equation related to Ω. This relation can
arise in several ways, e.g.

1. u solves a partial differential equation in a domain Ω ⊂⊂ D, and ∂Ω is the discontinuity
set for some of the parameters. A simple example is the optimal design of two conductive
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materials, where the conductivity a takes two different values, i.e.,

a(x) =
{

a1 x ∈ Ω
a2 x ∈ D\Ω.

A typical shape optimization problem consists in the optimization of some functional
J(Ω) = J̃(uΩ), where uΩ solves

− div (a∇uΩ) = 0.

2. u solves a partial differential equation in Ω and satisfies a boundary condition on ∂Ω.

3. u solves a partial differential equation on the surface of ∂Ω.

The general structure fo such problems is

J(Ω) = J̃(uΩ, Ω) → min
Ω

subject to
e(uΩ, Ω) = 0,

where e denotes the partial differential equation. In this case we have to use the chain rule
and an implicit function theorem to compute the shape sensitivity. Let Ω(t) be as above and
let u(t) denote the solution of

e(u(t), Ω(t)) = 0

with Ω(t) given. Then the shape sensitivity of J is given by

J ′(Ω)V =
d

dt
J(Ω(t))

∣∣∣
t=0

=
d

dt

(
J̃(u(t), Ω(t))

)∣∣∣
t=0

=
∂J̃

∂u
(u(0), Ω(0))u′(0) +

∂J̃

∂Ω
(u(0), Ω(0))V.

Here ∂J̃
∂u denotes the (Gateaux-)derivative of J̃ with respect to u (for Ω fixed) and ∂J̃

∂Ω denotes
the shape sensitivity of J̃ with respect to Ω (for u fixed). Due to the chain rule we obtain for
u′(0) = d

dtu(t)|t=0 the equation

0 =
d

dt
e(u(t), Ω(t)) =

∂e

∂u
(u(t),Ω(t))u′(t) +

∂e

∂Ω
(u(t), Ω(t))V.

Here, ∂e
∂Ω(u,Ω(t))V = d

dte(u,Ω(t)), for u fixed, i.e., it means a generalization of shape sen-
sitivities from functionals to operators. The function u′ = u′(0) is usually called ”shape
derivative”.

We shall discuss the computation of shape derivatives for two examples. First, consider
the maximization of current for a conductive material. The objective is given by

J(Ω) = −
∫

Γ
a
∂uΩ

∂n
ds,
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where Γ ⊂ D, Ω ⊂⊂ D and u solves

− div (a∇u) = f, in D

with homogeneous boundary values u = 0 on ∂D. Here, f is a given function and a is defined
as above, i.e.

a(x) =
{

a1 x ∈ Ω
a2 x ∈ D\Ω.

The shape sensitivity is then given by (note that Ω ⊂⊂ D and thus a = a2 on ∂D)

J ′(Ω)V = −
∫

Γ
a2

∂u′

∂n
ds,

where u′ is the shape derivative corresponding to the above state equation. In order to
compute the shape derivative u′, we consider the state equation in its weak form, i.e. we seek
u ∈ H1

0 (D) satisfying ∫

D
a∇u∇v dx =

∫

D
fv dx ∀v ∈ H1

0 (D)

We can write the left-hand side as

< v, e(u,Ω) >=
∫

D
a2∇u∇v dx +

∫

Ω
(a1 − a2)∇u∇v dx.

The derivative with respect to u is given by

∂e

∂u
(u,Ω)u′ =

∫

D
a2∇u′∇v dx +

∫

Ω
(a1 − a2)∇u′∇v dx =

∫

D
a∇u′∇v dx.

In order to compute the derivative with respect to Ω, we can use the above results on shape
sensitivities for the functional

∫
Ω g dx, now with g = (a1 − a2)∇u.∇v. Thus,

∂e

∂Ω
(u,Ω)V =

∫

∂Ω

(
(a1 − a2)∇u.∇v

)
V.n ds ∀v ∈ H1

0 (D).

As for standard optimal design problems, we can also employ the adjoint method to compute
the shape sensitivity. For this sake, let u∗ ∈ H1

0 (D) be the unique weak solution of
∫

Γ
a2

∂w

∂n
dx =

∫

D
a∇w∇u∗ dx ∀w ∈ H1

0 (D).

Then we obtain

−
∫

Γ
a2

∂u′

∂n
ds = −

∫

D
a∇u′∇u∗ dx =

∫

∂Ω

(
(a1 − a2)∇u.∇u∗

)
V.n ds,

i.e., the shape sensitivity is again a functional of V.n concentrated on ∂Ω.
Our second example is the shape derivative for a state equation with Dirichlet boundary

condition, i.e.

∆u = f in Ω
u = 0 on ∂Ω.
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It is easy to show that
∆u′ = 0 in Ω.

For the boundary condition, let y ∈ ∂Ω and let dx
dt (t) = V (x(t)), x(0) = y. Then u(x(t)) = 0

for all t and thus
d

dt
u(x(t)) = u′(x(t)) +∇u(x(t)).V (x(t)) = 0.

Hence, u′ satisfies
u′ = −∇u.V on ∂Ω.

We finally notice that second derivatives, so-called shape Hessians can be computed by
applying the same technique as for shape sensitivities to J ′(Ω)V , now with a second velocity
W .

5.2 Level Set Methods

Level set methods recently received growing attention in shape optimization due to their
capabilities of solving shape optimization problems without parametrizations. The main idea
of the level set method is to represent a shape as

Ω(t) = {φ(., t) < 0},

where φ : Rd×R+ → R is a suitable continuous function, ideally the signed distance function
to ∂Ω (i.e., equal to the distance between x and ∂Ω if x ∈ Rd\Ω, and equal to the negative
distance if x ∈ Ω). For an appropriate φ we have that

∂Ω(t) = {φ(., t) = 0}.

Now consider the motion of points in Ω(t) by dx
dt = V (x). Then we obtain from the chain rule

for x(t) ∈ ∂Ω(t)

0 =
d

dt
φ(x(t), t) =

∂φ

∂t
+ V.∇φ = 0,

i.e., φ can be determined by solving a transport equation. As we have seen above, the most
interesting case is the one of a motion in normal direction on ∂Ω(t), i.e., V = Vn.n. In order
to use such a velocity in the level set method, we have to express the normal in terms of the
level set function φ. Assume that {x̃(s, t)|s ∈ (−ε, ε)} is an arc on ∂Ω(t), locally parametrized
by s around x(t) = x̃(0, t). Then

0 =
d

ds
φ(x̃(s, t), t) = ∇φ(x̃(s, t), t)

∂x̃

∂s
.

Since ∂x̃
∂s can be any tangential direction, we obtain that ∇φ is a normal direction, and one

obtains the unit normal as
n(s, t) =

∇φ

|∇φ|(x̃(s, t), t).

Using these formulas together with the transport equation for φ, we obtain the Hamilton-
Jacobi equation

∂φ

∂t
+ Vn|∇φ| = 0 (5.2)
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for φ. One can show that the motion of Ω(t) is determined by

Ω(t) = {φ(., t) < 0}
if φ is a solution of (5.2) in Rd ×R+ where Vn is an arbitrary extension from {φ(., 0) < 0} to
Rd.

For further details and applications of the level set method we refer to the monograph by
Osher and Fedkiw [22], and for the application of level set methods to shape optimization
and reconstruction as well as further links to literature we refer to the survey paper [7].

5.2.1 Computing Shape Sensitivities by Level Set Methods

Using the level set method, we can formally compute shape sensitivities in a simple way.
Consider again the functional

J(Ω) =
∫

Ω
g(x) dx

and let ∂Ω(t) move with normal speed Vn. Then we obtain

J(Ω(t)) =
∫

{φ(.,t)<0}
g(x) dx

=
∫

Rd

H(−φ(x, t))g(x) dx,

where H denotes the Heaviside function

H(p) =
{

1 if p > 0
0 else.

Since the derivative of the Heaviside function is the Dirac-delta-distribution, we obtain for-
mally

d

dt
J(Ω(t)) =

∫

Rd

−H ′(−φ(x, t))
∂φ

∂t
(x, t) g(x) dx

=
∫

Rd

δ(φ(x, t))|∇φ(x, t)| Vn g(x) dx

Now we apply the co-area formula, i.e.
∫

Rd

A(φ(x)) B(x) |∇φ(x)| dx =
∫

R
A(p)

∫

{φ=p}
B(x) ds(x) dp.

This implies

d

dt
J(Ω(t))

∣∣∣
t=0

=
∫

Rd

δ(φ(x, 0)) g(x) Vn(x) |∇φ(x, 0)| dx

=
∫

R
δ(p)

∫

{φ=p}
g(x) Vn(x) ds dp

=
∫

{φ=0}
g(x) Vn(x) ds(x)

=
∫

∂Ω
g Vn ds,
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i.e., we recover the above formula for the shape sensitivity.
In a similar way we can compute the shape sensitivity of the functional

J(Ω) =
∫

∂Ω
g ds

For this sake we use again the δ-distribution and the coarea formula to deduce

J(Ω(t)) =
∫

{φ(.,t)=0}
g(x) ds(x)

=
∫

R
δ(p)

∫

{φ(.,t)=p}
g(x) ds(x) dp

=
∫

Rd

δ(φ(x, t)) g(x) |∇φ(x, t)| dx

Thus, we can try to compute the time derivative as

d

dt
J(Ω(t)) =

∫

Rd

g

(
δ′(φ)|∇φ|φt + δ(φ)

∇φ∇φt

|∇φ|
)

dx

=
∫

Rd

g

(∇δ(φ)∇φ

|∇φ| φt + δ(φ)
∇φ∇φt

|∇φ|
)

dx

=
∫

Rd

δ(φ)
(
− div

(
g
∇φ

|∇φ|φt

)
+ g

∇φ∇φt

|∇φ|
)

dx

= −
∫

Rd

δ(φ)
(∇g.∇φ

|∇φ| .φt + g div
( ∇φ

|∇φ|
)

φt

)
dx

=
∫

Rd

δ(φ)|∇φ| Vn

(
∇g

∇φ

|∇φ| + g div
( ∇φ

|∇φ|
))

dx

=
∫

{φ=0}
Vn

(
∇g

∇φ

|∇φ| + g div
( ∇φ

|∇φ|
))

ds

One observes that on ∂Ω = {φ = 0} we have

u =
∇φ

|∇φ| , κ = div n = div
( ∇φ

|∇φ|
)

,

where n is the unit normal and κ is the mean curvature. Thus,

J ′(Ω)Vn =
∫

Γ
Vn

(
∂g

∂n
+ g κ

)
ds.

We finally notice that the above strategy of removing the term δ′(φ) by rewriting

δ′(φ)|∇φ| = ∇δ(φ)
∇φ

|∇φ|
and applying Gauss’ Theorem can be used for general functionals (e.g. for second derivatives
of the functional J above). In this way, we always obtain a term of the form

−δ(φ) div
( ∇φ

|∇φ|
)

,
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i.e., the mean curvature on {φ = 0} = ∂Ω. In particular, we can rewrite all derivatives as
surface integrals on ∂Ω, involving only natural geometric quantities like the normal n or the
curvature κ, its normal derivative ∂κ

∂n , etc. It is a good advice to check all quantities that one
obtains by computing shape sensitivities in this way with respect to their geometric meaning.
If some terms do not have a geometric interpretation, then most likely the calculation was
wrong.

5.2.2 Numerical Solution

In order to obtain computational methods for shape optimization problems we can again
employ the level set method. In principle, we can apply any of the optimization methods
discussed in chapter 4, once we know how to compute derivatives. The major difference is the
way we update the design variable. In the setting of chapter 4, we have computed a search
direction s to obtain

uk+1 = uj + τks.

Obviously, we cannot use the same strategy in shape optimization, since a formula like

Ωk+1 = Ωk + τks

does not make sense for shapes Ωk. However, there is a natural update offered by the speed
method. First we notice that the update for a design variable u in a Hilbert space can be
rewritten as

uk+1 = u(τk),
du

dt
= s, u(0) = uk.

As in the context of shape derivatives, the corresponding speed method for shapes gives

Ωk+1 =
{

x(tk)
∣∣∣ dx

dt
= s, x(0) ∈ Ωk

}
.

Since the motion depends only on the normal velocity on ∂Ω, we can define the update also
via the level set method as

Ωk+1 = {φ(., τk) < 0}
∂φ

∂t
+ sn|∇φ| = 0 in (0, τk)

{φ(., 0} = Ωk,

where sn is the normal component of the update s. Hence, the iterative method is charac-
terized by choosing a normal update. Below, we shall detail some possible ways for choosing
this update.

We start with a gradient-type method. One observes that for optimization in Hilbert
spaces, the gradient method is characterized by choosing the update s via

< s, v >= −J ′(u)v ∀v ∈ U .

We can now write an analogous formula for the update sn, namely

< sn, Vn >= −J ′(Ω)Vn ∀Vn ∈ U ,
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where U is a suitable Hilbert space for which we have several possibilities. We start with the
simple choice U = L2(∂Ω), i.e.,

< Sn, Vn >=
∫

∂Ω
SnVn ds.

As we have seen above, one can usually write the shape sensitivity in the form

J ′(Ω)Vn =
∫

∂Ω
h.Vn ds

(with h = g for J(Ω) =
∫
Ω g dx, and h = ∂g

∂n + gκ for J(Ω) =
∫
∂Ω g ds). Thus, the equation

for Sn becomes
∫

∂Ω
SnVn ds =< Sn, Vn > = −J ′(Ω)Vn

= −
∫

∂Ω
h Vn ds ∀Vn ∈ L2(∂Ω)

which is equivalent to choosing Sn = −h.
Another interesting Hilbert space is H1(∂Ω). The scalar product in this space is given by

< Sn, Vn > =
∫

∂Ω
(∇sSn∇s Vn + SnVn) ds

=
∫

∂Ω
Vn(−∆sSn + Sn) ds,

where ∆s denotes the gradient with respect to the surface variable S on ∂Ω and ∆s is the
surface Laplacian. Consequently, the update Sn can be computed by solving the Laplace-
Beltrami equation

−∆sSn − Sn = h

on ∂Ω (note that we do not need a boundary condition, since the boundary of the surface ∂Ω
is empty).

In general, we can write a Hilbert space scalar product as

< Sn, Vn >=
∫

∂Ω
(ASn)Vn ds,

where A is a positive definite operator. Thus, we may choose any search direction of the form

Sn = −A−1h,

where A is a positive definite operator. Since

J ′(Ω)Sn = − < Sn, Sn >= −‖Sn‖2,

this yields a descent direction and we can use line search techniques to find a reasonable τk.
In a similar way to gradient methods we can derive Newton-type methods, for which Sn

is choosen solving
J ′′(Ω)(Sn, Vn) = −J ′(Ω)Vn, ∀Vn ∈ U .
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5.3 Topological Derivatives

The approach that is most closely related to shape optimization uses topological derivatives
as a criterion to introduce holes in addition to shape derivatives for moving shapes. The
topological derivative measures the first-order variation of the objective when introducing an
infinitesimal hole, usually limited to a spherical shape. I.e., the topological derivative of a
functional J at topology Ω ⊂ Rd with respect to a variation at x ∈ Rd is given by

dT J(Ω;x) = lim
R↓0

J(Ω\BR(x))− J(Ω)
|BR(x)| .

One observes that for dT J(Ω;x) < 0 the nucleation of a small hole centered at x is favorable,
since

J(Ω\BR(x)) < J(Ω)

for R sufficiently small. Thus, one can combine the use of the topological derivative with
shape optimization techniques, e.g. by alternating the nucleation of holes and the motion of
the arising shapes.

We consider a simple example: Let

J(Ω) =
∫

D
f(uΩ) dx,

where f : R→ R is a smooth given function, and uΩ ∈ H1
0 (Ω) solves

−∆uΩ = χΩ in D ⊃⊃ Ω.

Then the topological derivative is given by

dT J(Ω;x) =
∫

D
f ′(uΩ)u′ dx,

where
u′ = lim

R↓0
uΩ\BR(x) − uΩ

|BR(x)| .

Since
−∆(uΩ\BR(x) − uΩ) = χΩ\BR(x) − χΩ = −χBR(x)

we obtain
−∆u′ = −δ(x),

and hence, u′ = −G(.; x), where G is the Green function of the Laplace operator on D.
Using topological derivatives leads to a method with clear geometric interpretation, but

it suffers from two major drawbacks in general. First of all, it is difficult to switch between
topological and shape derivatives in an automatic way. Secondly, the topological derivative
has difficulties to handle surface functionals. Consider e.g., the case of

J(Ω) =
∫

Ω
g dx +

∫

∂Ω
1 ds.
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Then

J(Ω\BR(x))− J(Ω) =
∫

BR(x)
g dx +

∫

∂BR(x)
1 ds

=
∫

BR(x)
g dx + 2πR.

Thus,
J(Ω\BR(x))− J(Ω)

R2π
=

2π

R
+

∫
BR(x) g dx

R2π
= o

(
1
R

)
,

and the limit R → 0 always gives +∞, i.e., the topological derivative cannot generate a hole.
We shall therefore consider alternative approaches in the following sections.

5.4 Phase-Field Methods

In this section we consider functionals of the form

J(Ω) = G(χΩ) + α

∫
|∇χΩ| dx

= G(χΩ) + α

∫

∂Ω
1 ds,

where χΩ denotes the indicator function of the set Ω. Then one can try to approximate the
minimization with respect to the signed distance function by the minimization of

J̃(u) = G(u) + α

∫

Rd

(
ε|∇u|2 +

1
ε
W (u)

)
dx

with respect to u ∈ H1
0 (Ω), where ε > 0 is a small parameter and W is a double-well potential

with minima at u = 0, u = 1, e.g.

W (u) = u2(1− u)2.

One can show that the functional J̃ converges to the original functional J as ε → 0 (in an
appropriate sense).

One can interpret the ε-dependent terms in J̃ as penalizations: the term 1
ε W (u) favors

the values u = 0 and u = 1 and causes the convergence to indicator functions as ε → 0. The
term ε|∇u|2 penalizes oscillations in u and causes the boundedness of the perimeter

∫ |∇u| dx
as ε → 0.

The phase-field method allows to use standard otpimization techniques in the Hilbert
space H1

0 (Ω). Moreover, the parameter ε can be used to obtain a continuation strategy, i.e.,
one can start the optimization procedure by computing a minimizer of J̃ for large ε = ε1,
where the problem is globally convex, use the result as a starting value for the minimization
with ε = ε2 < ε1, and so on. In this way one can compute global minima of J̃ , although this
functional is non-convex for small ε in general.
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(Birkhäuser, Boston, 1989).

[5] A.Binder, H.W. Engl, C.W. Groetsch, A. Neubauer, O. Scherzer, Weakly closed nonlinear
operators and parameter identification in parabolic equations by Tikhonov regularization,
Appl. Anal. 55 (1994), 215-234.

[6] M.Burger, B.Kaltenbacher, Regularizing Newton-Kaczmarz methods for nonlinear ill-
posed problems, SFB-Report 04-17 (University Linz, 2004), and submitted.

[7] M.Burger, S.Osher, A survey of level set methods for shape optimization and reconstruc-
tion, Europ. J. Appl. Math. (2005), to appear.

[8] D.Colton, R.Ewing, W.Rundell, Inverse Problems in Partial Differential Equations
(SIAM, Philadelphia, 1992).

[9] D.Colton, R.Kress, Inverse Acoustic and Electromagnetic Scattering Theory (2nd ed.,
Springer, Berlin, 1998).

[10] M.C.Delfour, J.P.Zolésio,Shapes and geometries. Analysis, differential calculus, and op-
timization (SIAM, Philadelphia, 2001).

[11] P.P.B.Eggermont, Maximum entropy regularization for Fredholm integral equations of the
first kind, SIAM J. Math. Anal. 24 (1993), 1557-1576.

[12] H.W. Engl, Integralgleichungen (Springer, Vienna, 1997).

[13] H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems (Kluwer,
Dordrecht, 1996).

[14] H.W.Engl, G.Landl, Convergence rates for maximum entropy regularization, SIAM J.
Numer. Anal. 30 (1993), 1509-1536.

46



[15] H.W.Engl, W.Rundell, eds., Inverse Problems in Diffusion Processes (SIAM, Philadel-
phia, 1994).

[16] V.Isakov, Inverse Source Problems (AMS, Providence, 1990).

[17] V.Isakov, Inverse Problems in Partial Differential Equations (Springer, New York, 1998).

[18] A.Kirsch, An Introduction to the Mathematical Theory of Inverse Problems (Springer,
Berlin, 1996).

[19] R.Kowar, O.Scherzer, Convergence analysis of a Landweber-Kaczmarz method for
solving nonlinear ill-posed problems, in: S.Romanov, S.I.Kabanikhin, Y.E.Anikonov,
A.L.Bukhgeim, eds., Ill-Posed and Inverse Problems (VSP Publishers, Zeist, 2002).

[20] M.Hanke, O.Scherzer, Inverse problems light: Numerical differentiation Amer. Math.
Monthly 108 (2001), 512-521.

[21] Y.Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations,
AMS, Providence, 2001.

[22] S.J.Osher, R.P.Fedkiw, The Level Set Method and Dynamic Implicit Surfaces (Springer,
New York, 2002).

[23] L.I.Rudin, S.Osher, E.Fatemi, Nonlinear total variation based noise removal algorithms,
Physica D 60 (1992), 259–268.

[24] C.Vogel, Computational Methods for Inverse Problems (SIAM, Philadelphia, 2002).

47


