4 Applications in Structural Mechanics

We discuss the use of the DWR method for the finite element solution of problems in
linear elasticity and in elasto-plasticity. This includes the treatment of incompressible
material which prepares for fluid mechanical applications.
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4.1 Lamé-Navier system

Fundamental problem of linear elasticity theory:

—V-o=f, o=A4ew), eu)=1i(Vu+Vu") inQ

u=0 onl'p, n-o=g only

Describes the (small) deformation of an elastic body occupying a bounded (polyhedral)
domain 2 C R? (d=2 or 3) which is fixed along a part I';; (meas(I'p) # 0) of its bound-
ary 0€), under the action of a body force with density f and a surface traction g along
FN - BQ \ FD .

Linear—elastic isotropic material law,
o = Ae(u) = 2ue® (u) + kV - ul
with constants g > 0 and x > 0, and €” the deviatoric part of €.

Primal variational formulation:

a(u’ ¢) = (AG(U),€(¢)) = (fa ¢) + (gaw)FN Vw ev
where V = {v e H'(Q)?% v=00nTp}.

Finite element discretization with linear/bilinear elements in subspaces V}, C V' on meshes
matching the decomposition Q2 =1, UT, .

a(un, ¥n) = (f,¥n) + (9, %0)r, Vn € Vi

Galerkin orthogonality relation for error e = u — up,:

a(e, ’(ﬁh) = 0, wh c Vh
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A posteriori error analysis

For error functional J(-) solve dual problem:

a(p,z) =J(p) VpeV

Taking ¢ = e and using Galerkin orthogonality,

J(e) = 0,(6, Z) = (1,(6, = wh)a wh € Vh

Splitting the global integration over {2 into the contributions of the mesh cells T € T},
and integrating cell-wise by parts yields

J(e) = Z {(—V - Ae(e), z—n) ik + (n-Ae(e), z—q/)h)aK}
KeTy,
Observing —V-Ae(u) = f and the continuity of n - Ae(u) across interelement edges,
J(&) = 3 {(Rwn), 2= )i + (r(un), 2= n)oxc |
KeTy,
with cell residuals R(up) x := f+V-Ae(uy) and the edge residuals:
in - [Ae(up)], if T C 0K \ 09

r(up)r = —qn- Ae(uy), if T CTp
n-Ae(up) —g, it T C Iy

Energy-norm error estimate:
1/2

||€||E < nE(uh) = CSCI( Z pi)
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Numerical test (F.-T. Suttmeier 1997)

A square elastic disc with a crack is subjected to a constant boundary traction acting
along half of the upper boundary. Along the right-hand and lower parts of the boundary
the disc is clamped and along the remaining part of the boundary (including the crack)
it is left free.

I ttttt  traction g

[’y Dirichlet boundary

The solution has a singularity with a stress singularity (expressed in terms of polar coor-

dinates (r,0)):

o2

The material parameters are chosen as commonly used for aluminium, i.e., 2u ~ A ~
0.16 N/m?2. The surface traction is of size g = 0.1N/m?.

Computation of the mean normal stress over I'p,
J(u) = / n - Ae(u)-nds
T

Regularization with € = TOL . The reference solution is oyer .

Je(o-h_o-ref)
Je(aref)

T (Un, On)

Erel =
Je(ah_aref)

Ieff =
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L] N Jwn) | B | ILg | [L] N J(un) | E™

1] 256 |0.017080 | 0.0283 | 1.80 | | 1| 256 | 0.017080 | 0.0283
2| 484 | 0.019542 | 0.0180 | 1.96 | | 2 | 544 | 0.018174 | 0.0237
3| 1060 | 0.021138 | 0.0113 | 1.95 | | 3 | 1180 | 0.019363 | 0.0188
4| 2113 | 0.022157 | 0.0070 | 1.96 | | 4 | 2659 | 0.020528 | 0.0139
5| 4435 | 0.022795 | 0.0044 | 1.92 | [5 | 6193 | 0.021538 | 0.0096
6 | 8830 | 0.023198 | 0.0027 | 1.86 | | 6 | 13423 | 0.022319 | 0.0064
7 | 15886 | 0.023428 | 0.0017 | 1.79 | | 7 | 31336 | 0.022811 | 0.0043
8 | 20947 | 0.023593 | 0.0010 | 1.79 | | 8 | 65332 | 0.023153 | 0.0029

Table. Results for 7, (up) (left) and ng(up) (right).
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Figure. Results for n,(up) (left) and ng(up) (right).
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4.2 A model problem in elasto-plasticity theory
(a non-differentiable nonlinearity)

Fundamental problem in the static deformation theory of linear—elastic perfect—plastic
material (Hencky model):

Vio=—f ¢€lu)=A:0+)\ €)= %(VU-FVUT) in Q
Ai(t—0)<0 V7 with F(r)<0

u=0onlp, om=g only
A plastic growth.

This system describes the deformation of an elasto-plastic body occupying a bounded
domain Q C R? (d =2 or 3) which is fixed along a part I'p (meas(I'p) # 0) of its
boundary 02, under the action of a body force with density f and a surface traction g¢
along T'y = 0Q\I'p.

Linear—elastic isotropic material law:
o = 2ueP (u) + kV-ul

with constants p > 0 and k > 0, while the plastic behavior follows the von Mises flow

rule, with some o¢ > 0:
F(o)=|oP| =00 <0

Primal variational formulation:

Au)() == (Cle(u),e(®)) = (f,¢) = (9, ¢)ry =0 VeV

where C(e(u)) = T (2ueP (u)) + kV-ul

[ @ )] <o
(2ue”(u)) = |€D(0u)|6D(“) if |2,U6D(u)| > 0o

This nonlinearity is only Lipschitz continuous.
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Finite element approximation (Q);-elements):

A(up)(n) =0 Vo, € Vp,

Associated stress oy :
on = (2ue” (up)) + &V - upl.

Given a (linear) error functional J(-), we have the a posteriori error representation, with
second-order remainder,

J(e) = plun)(z — ¥n) + R, oy €V,

where
plup)(-) = —A(un)(-)
Linear dual problem:

(C'(we(y),e(2)) = () VeV

Ce, if [2u7P| < oy,
C'(T)e:=1% o (PP _ 2 D| -
W{I - W}e + rktr(e), if [2ur”]| > 0

The remainder term is R®) = O(e?) in regions where the form A(-)(-) is C?, i.e. outside
the elastic-plastic transition zone {|2u7”| = 0¢}. The residual term in the error identity
has the form

~Aun)e=tn) = D {(Rlun), 2= ) + (r(wn), 2= n)oxc }

KET,
with the cell and edge residuals
R(up) ik = f — V-C(e(up))
in-[C(e(un))], if T C 0K \ 09

(
r(up)r = — S n-Cle(up)) — g, if T C Ty,
n-C(e(up)), if L CoQ\Tn
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Alternative heuristic error indicators for comparison:

(1) ZZ-error indicator (d la Zienkiewicz/Zhu):
An approximation o &~ Moy, to o is constructed by local averaging, ,

1/2
leall & nzz(un) = (S IMaon = anll3)
KeTy,

The nodal value at a point of the triangulation determining Mjo, is obtained by av-
eraging the cell-wise constant values of oj of those cells having this point in common.

N | A Muon
Yy <>

/ }.( }.
O,h, $.( \.

(2) An energy-error indicator (a la Johnson/Hansbo):
This heuristic energy-error estimator is based on decomposing the domain €2 into discrete
plastic and elastic zones, Q = Q) U Q5 . Accordingly the error estimator has the form

1/2
leall ~ m(un) = i (S )

KETh

with the local error indicators defined by

o 4 it porct’, if KCQf
“ {pK + pox }||Mpon — onllx, if K C
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Numerical tests (F.-T. Suttmeier 1998)

a) Square plate with a slit:

Figure. Plot of |o”| (plastic regions black) computed on a mesh with

N =~ 64000 cells.

Compute the mean normal stress over the clamped part of the boundary,

J(a):/ n-o-nds
Ty

N

Je(gh)

Erel

Ieff

484

0.019542

0.0180

1.96

1060

0.021138

0.0113

1.95

2113

0.022157

0.0070

1.96

4435

0.022795

0.0044

1.92

8830

0.023198

0.0027

1.86

15886

0.023428

0.0017

1.79

29947

0.023593

0.0010

1.79

Nl Neo' N IR NS N NJCIN O N

52288

0.023697

0.0006

1.86

Table. Results obtained by the weighted error estimator 7, (up) .
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Figure. Finest meshes obtained by n,(uy) (left) and ng(oy) (right).
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Figure. Relative error for J(o) on grids based on the
different error indicators.

The weighted error estimator turns out to be efficient even on coarse meshes. This indi-
cates that the strategy of evaluating the weights wr computationally works also for the
present irregular nonlinear problem.
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b) Benchmark square plate with a hole:

[
P;
[ ]
P
| I
P1 P2

o

Figure. Geometry of the benchmark problem and plot of |o
(plastic region black, transition zone white)
computed on a mesh with N ~ 10000 cells.

Geometrically two-dimensional model (restriction to a quarter-domain) with plane-strain
approximation, i.e., ¢;3 = 0, and perfectly plastic material behavior. The material param-
eters are chosen as those of aluminium, x = 164,206 N/mm?, p = 80,193.80 N/mm?,
09 = \/2%450. The boundary traction is given in the form g(t) = tgy, go = 100, t €
[0,6]. For the stationary Hencky model, the calculations are performed with one load
step from t=0 to t=4.5.

The quantities to be computed are:
e Displacements u; and wuy at various points and stress o9 (P5) .

The solutions on very fine (adapted) meshes with about 200, 000 cells are taken as reference
solutions u,.s for determining the relative errors Er and the effectivity indices I of
the error estimator.
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N

ul(P5)

Erel

Ieff

1000

6.5991e-02

7.7403e-02

0.64

2000

6.3462¢-02

3.6121e-02

0.83

4000

6.2159e-02

1.4846e-02

1.04

8000

6.1554e-02

4.9704e-03

1.55

16000

6.1389e-02

2.2746e-03

1.74

Table. Results for ui(P5) based on the error estimator 7, (up).

Figure. Optimized meshes for computing u1(P;) (top) and u;(Ps)
(bottom) together with corresponding weight distributions wr .
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4.3 Displacement-pressure discretization

In the plastic region the material behavior is almost incompressible which can cause
stability problems. In order to cope with this problem, one may use a stabilised finite
element discretization using an auxiliary “pressure” variable. We consider again the
Hencky model. The finite element subspaces V;, C V and W, C W are supplemented
by a subspace @), C @@ for the discrete “pressure”.

Discrete problem: Find {up,on,pr} € Vi x Wy, X Qp, such that
(on —HCe(un), ) + (on, €(0n)) — (Pr, V- 0n) = F(pn)
(V- un, xn) + (6~ pr,xn) = 0

for all {p,7,x} € Vi, x W), x @, . Here, we choose Q) of “equal-order” as the “displace-
ment space” Vj,, i.e., it consists also of continuous, piecewise (isoparametric) bilinear
functions (stability problem).

Stabilized scheme:

(on — C(e(un)); ) + (on, €(n)) — (pn, V- on) = F(pn)

(V * Up, Qh) + /i_l(pha q}l) +« Z h%{(vpha VQh)K =0
KeTy,

for all {(ph,Th,qh} eV, x W, x Qh-

Stability estimate:

sup (pha V. Uh)

S xlVanlz) = e Q
+ (04 K||VPh ) Z YPrlls, Pn € &h
S0 et B

KeTy,
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Numerical test (F.-T. Suttmeier 2000)

Model problem ”square disc with crack” with material values x = 2u = 160000, and
boundary traction g = tgg, with go = 100 and ¢ = 2.2340. Target quantity:

J(u) :=/u-nds:/ V- udz
s s

where S is a suitable circular path around the tip of the crack.

traction g

R O O O A R O

—)

Figure. Geometry of the square disc test problem and plot of |o?|

(plastic regions black) computed on a mesh with N ~ 64000 cells

J(Uh)

N u-form u/p-form
1000 | 1.6760e-04 | 1.693630e-04
2000 || 1.6817e-04 | 1.695619e-04
4000 | 1.6875e-04 | 1.696680e-04
8000 || 1.6926e-04 | 1.699004e-04
16000 || 1.6963e-04 | 1.699354e-04
32000 || 1.6986e-04 | 1.700872e-04

Table. Results for computing Jg(u) on adaptive grids by the primal and
the displacement /pressure discretization ( Jg(u) ~ 1.7020e-04).
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