1 Practical Aspects of the Dual Weighted Residual
(DWR) Method

Abstract. We discuss some practical aspects of the approximate evaluation of weighted
a posteriori error estimators and the resulting mesh adaptation strategies. This includes
mesh optimization, anisotropic mesh adaptation and h/p adaptation.
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Goal of simulation: Computation of certain quantities J(u) from the solution of a
continuous model

Au) =0

with accuracy T'OL, by using a discrete model
.Ah (uh) = 0

of dimension N .

Goal of adaptivity: “Optimal” use of computing resources
e Minimal work for prescribed accuracy

N — min, TOL given

e Maximal accuracy for prescribed work

TOL — min, N given

Approaches:
e Error control by a posteriori error estimates

e Mesh adaptation by local error indicators



1.1 A model case

Dirichlet problem of the Laplacian on € C R?:

—Au=f in Q, upo=0

Approximation by finite element Galerkin method

weV:=Hy(Q):  alu,p):=(Vu,Ve) = (f,¢) VeV
u, €V CV: a(up, on) = (f,on) Vo € Vi

‘Galerkin orthogonality’ for error e := u—up:
ale,pp) =0, @ €V,
Error control with respect to some (linear) ‘output functional’ J(-):
z € V solution of the ‘dual’ (‘adjoint’) problem:
alp,z) = J(p) VeeV
zn, € Vp, finite element approximation:

a(pn, zn) = J(on) Von € Vi

Error representation (via ‘Galerkin orthogonality’)

J(e) =ale,z) =ale,z—1y), Yn € V4
= (fy2=n) — alup, z—¥n) =: p(up)(z—n)

Figure. Examples of computed dual solutions for evaluating u(a) and 0ju(a) (scaled
differently)



Cell-wise integration by parts (€2 polygonal domain):

p(un)(z—pn) = Z {(f+Aup, z—n)k — Ontin, 2— ) ok }

KeTy,
= Z {( f+AUh>Z Un) i + (—5[0nunl, 2—Vn)ar\o0
h = R(“h) =:r(up)

[Vuy) the jump of Vuy across the inter-element edges T,
cell and edge residuals R(up) and r(up):

R(uh)|K = f—l—Auh

—in . [Vu], if T Cc OK\09
T(Uh)|r¢={ ol hg, ifFC&Q\ }

L?-norm error bound:

I(@) = llel ™" (e,; ), (&) = el
The dual solution z € V N H?() satisfies
cs = ||V?2|| < 1.
Using Holder inequality in the error reporesentation yields
/2 4 2\ 12
el < Z PK WK < ( Z hKPK) ( Z hy WK)
KeTy, KeTy, KeTy,

with residuals
—1/2

prc = || B(un) || + e[| (un)llox

Strong interpolation estimate (& la Bramble/Hilbert):

B 1/2
(X m{llz=Tliic + hxllz= Tzl }) < erl|V22]

KeTy,
1/2
lell < er (3 Henie) IVl < eres( 3 bies) " = mustom)
KETh KETh



Example: L?-Norm error estimates by duality arguments
—V-{aVu}=f inQ, upy=0

Dual problem
—V-{aVz}=|e[ e inQ, zpn=0

A posteriori error estimates

e weighted:

lell < 2 (un) = e Z h3 prwi

wic = |[V22llk ~ & = | Viallx
e global:
1/2
lell < nu(un) = eres (D b i)
KETy,
2 & 2, 2 )2
cs = ||V°z|| m & = ( Z ||thh||K)
KETy,

The interpolation constant is ¢; &~ 0.2. The functional J(-) is evaluated by replacing the
unknown solution u in the righthand side of the dual problem by a patch-wise higher-
order interpolation I,(f)uh of uy,

2
er I,(L )uh—uh

Effectivity index measures quality of error estimation

L U(Uh)
bt = 1700)]

Remark. ‘I ~ 1’ does not necessarily mean a good efficiency in computing the target
quantity J(u) .



Numerical test (R. Becker 1996):

Q= (-1,1
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Figure. Pointwise errors obtained by nr: (left, scaled by 1/30)
and 7Y, (right, scaled by 1/10) on meshes with N ~ 10000 cells.

TOL N L ||€|| nr2 Ieff 55
4-1 [ 1132 | 9 19.03e-2 | 4.89¢-1 | 5.41 | 2.52
4=2 | 2836 | 9 | 6.40e-2 | 2.32¢-1 | 3.62 | 3.02
43 | 5884 |10 |2.13e-2 | 1.21e-1 | 5.68 | 3.26
4% 115736 | 11 | 7.36e-3 | 4.76e-2 | 6.46 | 3.55
475 123380 | 11 | 5.59e-3 | 3.12¢-2 | 5.58 | 3.39
TOL| N |L| e nge | leg | Cs

A4=1 | 52 | 43.18¢-1(2.25e-1[0.70 | .........
472 | 64 |4 |1.47e-1]1.52e-1]1.03].........
4=3 | 148 | 5| 1.08e-1[9.80e-2 [ 0.90 | .........
4=4 1 220 | 5 |6.77e-2 | 5.24e-2 | 0.77 | .........
475 |1 592 | 6 |2.21e-2[2.59¢-2 [ 1.17 ] .........
46 |1 892 | 6 |1.19e-2 | 1.54e-2 [ 1.29 | .........
477 12368 | 7 |5.11e-3 | 7.17e-3 | 1.40 | .........

Table. Results obtained by 7z, (top) compared to 1%, (bottom).




1.2 Evaluation of error estmators

Model problem on a polygonal domain 2 C R¢:

—Au=f inQ, u=0 onof

A posteriori error representation for finite element approximation:

J(e) = E(up) == > {(R(un), z—In2)x + (r(un), 2—In2)ox }

KEeTy,

A posteriori error estimate

()] < [Blun)| < nlun = 37 mx

KeTy,

with the local ‘error indicators’

nk = |(R(un), 2—Inz)k + (r(un), 2—Inz)ox|

Aspects of relevance:
e sharpness of the global error bound 7(up)

o effectivity of local error indicators ngx for mesh refinement

Remark. Already by this localization the asymptotic sharpness of the error estimate
may get lost. One should use the approximate error representation FE(uj), avoiding any
localization.



Technical details of mesh adaptation (using ‘hanging nodes’)

Refinement
_—

T =r
ptl=/ 7t

Figure. Refinement and coarsening in quadrilateral meshes
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Figure. (); nodal basis function on a patch of cells with hanging nodes



1. Approximation by higher order methods:
The dual problem is solved bgf using biquadratic finite elements on the current mesh
yielding an approximation zh2) to z:

M = | (Rlun), 57 = i) ic + (r(un), 27 = Tna? o

= limror o leg = 1

2. Approzrimation by higher order interpolation:
Patchwise biquadratic interpolation of the bilinear approximation z,(Ll) on the current

mesh yields an approximation Ié,?z,(ll) to z:
2 1 1 2 1 1
e = | (Rlun), 150247 =24 )i + () 137217 =21 or
= lim infror 0 leg ~ 1 — 2

3. Approrimation by difference quotients:
Interpolation estimate a la Bramble/Hilbert yields

lz2—Inzl i + Byl |z —Inzllox < erh%]| V22|

The second derivative V2z is replaced by a suitable second-order difference quotient
h%ihl) of the approximate dual solution:

1 = erhi? pc||[0n2 o

= lim infTOL_,O Ieﬁ‘ ~5—10

BN ECEN-ARE
1|43 6.667 | 12.82 | 2.066
4% | 1.253 | 13.51 | 45.45
45 | 1.052 | 3.105 | 9.345
4% 11'1.007 | 2.053 | 7.042
4711 1.003 | 1.886 | 6.667

G | W

Table. Efficiency of weighted error indicators for controlling the point-error J(e) = |e(0)|



1.3 Mesh adaptation strategies

A posteriori error indicators

|J(e)] ~ n:= Z nk, N:=#{KeT,}

KETh

e ‘Error balancing’ strategy: Equilibrate by iteration
g g

TOL

‘optimal” mesh characterized by equilibrated error indicators.

e ‘Fixed error reduction’ strategy: Order cells according to
Nkg 2 - 2 MKi 2 2 NK,N

For prescribed rates X% and Y% form

N N
ZUK,z‘ ~ X, Z Nki = Yn
=1 i=N*4+1

Cells Ky,...,Ky, are refined and cells Ky+,..., Ky coarsened.

Alternatively, refine X% and coarsen Y% of cells with largest and smalles error
indicator, respectively. This allows to keep number of cells almost constant in the
course of the mesh adaptation process.

e ‘Mesh optimization’ strategy:

n= Z nK%/h(x)QCI)(m) dx — min, Nz given
0

KeTy,

with ®(u(z),z(z)) a mesh-independent weighting function. Calculus of variations
yields ‘optimal’ mesh-distribution function

w

hope(z) = (m)”%(gg)—l/ﬂ W= /Q (2)"/2 dx



Model problem Poisson equation with error representation

n= Z {(f—i—A’LLh,Z—IhZ)K - %([@Luh],z—lhz)ag}

KeTy,
for estimating the error with respect to functional J(-).

e Convergence of residuals
f(@)+Aup(zg) = O1(zK), —1hi [Onun)(zx) = Po(zK)

e Convergence of weights

h (z—Inz)(zx) = @3(7K)

e Error representation formula with @ := (®;+®5)P3:
nr S R0 4+0,) () ~ / h(z)®(z) dz =: E(h)
KET, Q
with a distributed mesh-size function h(z) .
e Mesh complexity formula:

N(h) = Z Y% I_(dz/h(x)_ddx

KeTy, Q

Mesh optimization problems:

(II) N —min, n(u,) <TOL

Solutions:
W \1/d
ho@) = (57—) w7,
max
T TOLN/4d 7
gt (@) = () W) /e

W= / W)Y 4y < 00 ()
Q

10



Proof for Problem (I): Classical Lagrange approach:
L(h,\) = E(h) + M{N(h) — Nz }
with Lagrangian multiplier A € R. First-order optimality condition
d
%L(h + 1o, A+ tp) =0 = 0
for all admissible variations ¢ and pu,

oh(z)U(x) — dAh(z) " = 0, / h(z) % dz — Nypay = 0

and, consequently,

2 ~1/(2+d) 2\ ¥/t J
(= 2 J(24d) g _
W) = (@) , <dA) /qu(x) iz = N

From this, we deduce the desired relations

W) (@), () = ( w )”dq,(x)ww

A=
Nmax

2
d

The mesh-optimization problem (II) can be treated in an analogous way.

The first identity implies that an optimal mesh-size distribution with local cell-
widths hr is characterized by the equilibration of the cell-indicators nr as assumed
by the error balancing strategy.

Even for rather irregular functionals J(-) the quantity W is bounded. For example,
the evaluation of J(u) = d;u(P) for smooth u in R?® leads to ¥(x) =~ |rp|® and,
consequently,

Wm/|:v—P|_3/2da:< 00
0

The explicit formulas for hgp(x) have to be used with care in designing a mesh as
their derivation implicitly assumes that they actually correspond to scalar mesh-size
functions of isotropic meshes, a condition however which is not incorporated into
the formulation of the mesh-optimization problems.

A strong objection against the practical value of this formula is the need of approxi-
mating the weighting function ®(z) on the current mesh for steering the refinement
process which seems a contradiction in itself.

11



1.4 Use of error estimators for postprocessing

Poisson equation in 2D written in variational form
a(u, ) = (f,p) VpeV

a(un, on) = (f,on) Yon € Vi

The target functional is J(-) and z € V' the corresponding dual solution with z, € V},
its Ritz projection. There holds

J(u) = a(u, 2) = (f,2)
We recall the identity
J(u) = J(up) + ale, 2) = J(up) + p(up)(z—2p)

p(un)(z—2zn) = (f, 2—21n) — a(up, 2—2)

With the patchwise biquadratic interpolation Zz; := Iéi)zh of z, on the mesh T} :

J(e) = p(un)(Zn—21) = p(un)(Zn)

Rewriting this relation as

J(U) ~ Jl(uh) = J(Uh) -+ (f, Zh) — a(uhéh)

we obtain a presumably better approximation to J(u) than is J(u). Indeed, the error
can be written as

J(u) — Ji(up) = J(e) — p(un)(Zn) = ale, z) — a(un, 2p) = ale, 2—2p)

which implies ~
| J () = Ji(un)| < ||Ve| [[V(z=2)|

Since it is not clear whether Z, is a reasonably better approximation to z than zj,, this
estimate is of only questionabls value. Further, the two energy-norm errors correspond
both to the ‘primal’ mesh T, and can therefore not be minimized independently. It would
be desirable to have the possibility of using independent meshes T, for u;, and T} for
zp, in constructing an approximation of J(u) .

12



Proposition. Let T, and T; be two independent meshes and V,, and V;* corresponding
finite element spaces in which the Ritz projections up and z; of w and z are computed.
Further, denote by Z; the patchwise biquadratic interpolation of z; on the dual mesh Ty, .
Then, for the post-processed approxrimation

Jo(un) = J(un) + (f, 2;) — alun, ;)
there holds the estimate
[T () = Ja(un)| < ||[Vell [V(z—Z)]|
Here, the two energy-norm terms can be minimized independently by optimizing the primal

and dual meshes Ty, and T} .

Proof. We have

J(u) = Jo(un) = J(u) = J(un) — p(un)(Z;)
= (f,2) — alun, 2) = (f, 24) + alun, Z;)
= (f,2=2) — a(un, 2= %)

=ale,z—%})

This implies the assertion.

One may hope to obtain an even better approximation by

J3(up) = Jo(tin) = J(@n) + (f, Z) — alin, Z;)

where 1, is the patchwise biquadratic interpolation of wuy, .

13



Numerical test.

Model Poisson problem with Q = (=1,1)?,
u(z) = (1-a7)(1—23) exp(l—a3")

and the error functional .
J(u) :/ u(z1,0) dx
-1

In this example primal and dual solution have irregularitries at different locations such
that is is to expected that maximal efficiency is achieved using different meshes for u and
Zh -

primales Problem ——

duales Problem ——

I

L

Figure. Primal (left) and dual (right) solution of the model problem
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The figure shows the mesh efficiencies of J(u;) and the three post-processed approxi-
mations Ji(up), Jo(up) and Js(up). The mesh refinements are driven by energy-norm
error indicators as derived before separately on the primal and dual meshes T, and T},
respectively. We see that Ji(uj) does not bring significant adventages over the orig-
inal approximation J(u;). The two other approximations Jo(up) and Js(up) which
use different meshes for v and z are clearly superior and show a mesh complexity like

TOL ~ N~2 (N = Nprimal + Ndual)'
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Figure. Mesh efficiencies of postprocessing
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1.5 Toward anisotropic mesh adaptation

Sometimes isotropic mesh refinement as discussed so far is not efficient for properly re-
solving certain features of the solution. For example, in singular perturbed problems of
the form

—eAu+b-Vu=f, inQ, wupy=0
with small coefficient €, boundary layers may occur in which the solution has large deriva-
tive in normal direction to the boundary derivative while it varies only slowly in tangential
direction.

Figure. Locally anisotropic tensor-product meshes

We consider adaptive cell stretching alone and, for simplicity, concentrate on the construc-
tion of ‘optimal’ cartesian tensor-product meshes. Starting form an error representation
of the form

J(e) = Z {(f—i—Auh,z—Ihz)K - %([anuh],z—fhz)al(\an}

KeTy,
we have to adress the following questions:
e How can we detect anisotropic behavior of the true solutiopn u?
e How can we detect anisotropic behavior of the dual solution z?

e How can we obtain an indicator for ‘optimal’ cell stretching?

16



Suppose that the domain’s boundary and the mesh are oriented along the coordinate
axes. Then any cell K € T, is characterized by its widths h; in the z;-directions.

h K

ha

The edge-residual terms contain on each edge I' information about second derivatives of
the primal and dual solutions u and z:

e jump terms:  [Qup]r ~ hiO7upr

o weights:  (2—12). = h3052r

Assuming the second-order derivatives of u as constant, we obtain

|([Onun], 2= Inz)ox| ~ hiha|Oyul[05z] + hihs|0ful |05z
= |K|{h}|05ul [0 2] + |K|*hy*|0}ul |02}

Minimizing this with respect to h; yields the necessary condition

|07l 1032

2h1|02ul |0%z| — 2|K|?h73|0%u| |022| =0 = ht=|K[>PL1 2%
1133l |972] — 2| K P a3ul 3 = I

and, consequently,
PO
hy  |03ul [0%z]

Remark. This result is counter-intuitive as it does not indicate the optimal cell stretching
due to interpolation theory:

Consider the case that u is linear in x;-direction, i.e., 8?u = 0, and that z is isotropic.
Then, the formula would suggest to refine the cell in x; direction which is evidently the
wrong decision. It seems that considering only the edge terms in the error estimate, as
usually suggested, is not enough.

17



In view of this observation, we now follow a more heuristic approach and base the
anisotropic cell adaptation on an estimate for the interpolation error. We recall the
anisotropic interpolation error

1/2
IV (=Tl < c (B2l|r Vullk + b2, ully)
Hence, assuming the second-order derivatives as constant on K, we have

IV (u—Tyu) ||k < | K| (B2, Vul® + | K [*h72|0,Vul?)

Minimizing this with respect to h; results in the necessary condition

\82Vu|
|81V’LL|

2h1|0,Vul? = 2|K|*h3|0,Vul> =0 = k2= |K|

and, consequently,
hl ~ |82V’U,‘

h2 - |81V’LL|

In view of this result, we now consider the heuristic error indicator
N = ||[V(u—=Iyu)|[ x|V (2= In2)|

which is minimized for

This relation simultaneously reflects possible anisotropies in the primal and dual solution.

(11)

18



Numerical tests

Test problem
—Au=f inQ=(-1,1)% wpo=0

Test case 1. Solution
u(z) = (1—23)*(1—29)?(k2*+0.1) *

where the parameter k£ = 1,4,16,64,..., determines the strength of the anisotropy. The
right hand side is determined as f := —Au.
Target quantity:

J(u) == \Q|1/Qudx

The anisotropy is only in the primal solution while the dual solution satisfies —Az =1
and is isotropic.

'l
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i
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Witsszs

0.5 -1

Figure. Anisotropic solutions for £ =4 (left) and k£ = 64 (right);

The computation starts from a coarse uniform tensor-product mesh which is then succes-
sively adapted on the basis of the relations (I) and (II)
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Test 2. Solution and functional

u(@) = (=7)(1-a3) exp(—a1?),
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Figure. Primal and dual solution of Test 2
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1.6 h/p adaptivity

In the following, we will briefly discuss the extension of our approach to a posteriori error
control to higher-order finite elements. Let Vh(p ) ¢ V, be finite element spaces of oder
p+ 1. We recall the error representation,

Je)= > {(R(un), 2= 1P 2)kc + (r(un), 2— I 2)oxc }

KeTy,

with the cell- and edge-.residuals R(up) and r(up) as defined above and some local
interpolation [ ,(lp )2 € Vh(p ). The evaluation of this identity for use as an error estimator
may be done in a similar way as in the low-order case p = 1 em;)loying a patchwise
(p 4+ 1)-degree interpolation IQ(ZH)zh of the Ritz projection z, € Vh( .

On the basis of the a posteriori error estimator n(u,) and the resulting local error indica-
tors ng , ‘optimal’ distributions of hx and pg are constructed by a series of adaptation
cycles such that at the final stage the equilibration property is achieved:

TOL
UK%T}I; Np = #{K € Topi }

Let a tolerance TOL be given. In solving a stationary problem the adaptation process
usually starts from a coarse mesh ']I‘go), k = 1,2,..., with mesh-size distribution A

and polynomial degree p(®) = 1. Then, a sequence of meshes T,gk), k=1,2,..., with

) (k)

corresponding distributions h(Kk and py’ is constructed by the following process:

21



1. On the current mesh ']I‘Elk) compute ugk) and z,(lk), and evaluate nw(ugc)) and the

cell-error indicators ng . If n(ugk)) < TOL, then STOP.

2. Order cells according to the size of ng . On each cell K € Tgk) test whether

1TOL?

1 _ (k)
K<2Nh Nh #{KGTh}

n
If YES, procede to next cell. If NO, consider the following three cases:

e Cell K and the polynomial degree px had been left unchanged in the preced-
ing cycle. Then, leave K again unchanged but increase px to px + 1.

e Cell K had been left unchanged in the preceding cycle, but px had been
increased. Check whether

Nk < hgnyd

If YES, then again increase px to px +1. If NO, then refine K into 2? cells.
e Cell K had been obtained by refinement of a mother cell K,, € ']I‘glkfl) (with-
out changing the polynomial degree). Check whether

Nk < 27”77%?,1 ?

If YES, increase px to pg +1 and keep hg . If NO, keep px and refine K
into 2¢ cells.

3. Usually the local changes of hx and pgx cause additional hanging nodes and dis-
continuity of functions. In order to restore conformity (in the sense defined above),
some neighboring cells need to be refined and their polynomial degree raised.

In this adaptation process, we try to raise px whenever possible. The philosophy under-
lying this rule is that usually for enhancing accuracy on a cell K it is more economical
to raise px rather than to reduce hg .

22



Numerical test (V. Heuveline 2003)

The computational domain is = (—1,1) x (—1,3) possibly with a vertical slit with
tip at (0,0). The error J(e) is estimated by the error estimator 7, := n,(us) which is
evaluated by the procedure described above. The initial mesh consists of Ny = 45 cells.
For the purpose of this particular test, we did not go for maximum efficiency, but rather
iterated on each adaptation level as long as necessary in order to achieve satisfactory
equilibration of the indicators nx over the mesh. The quality of the error estimate is
expressed in terms of the ‘effectivity index’

Lot == |0 (un)/J (€)]

Further, we monitor the number of degrees of freedom N := dim V}", the actual error
J, = Ju(e) obtained by our method, and the error Jiz = Jg(e) obtained by using a
standard energy-type error estimator:

_ _ 1/2
mo(un) = (3 WEpiEIf + Awnllie + thacpi | [Bun] I )

KET}L

The semi-singular case

On the domain Qy = (—1,1) x (—1,3), we compute the derivative point value J(u) :=
O1u(zg) at xg = (0.5,2.5). The solution is u(z) = sin(m(x; + 1)/2) sin(3w(xs + 1)/4) .

The fully singular case

On the slit domain Q; = (=1,1) x (=1,3)\ {z € R, z; = 0,—1 < 25 < 0} defined
above, we compute the derivative point value J(u) := dyu(zy). The exact solution is
u(z) = r'/?sin(0/2)(z, — 1) (21 + 1) (22 — 3) (22 + 1)

23



The semi-singular case

N Ju(e) N/In(J,)? | mw(us) Lg Jr(e) Je/J.,
45 | 4.45e — 01 68 1.02e + 01 23.2 | 4.45e — 01 1
125 | 3.50e — 01 113 7.40e +00 21.1 | 4.33e —01 1
233 | 2.59%e — 02 17 3.42e — 01 13.2 | 7.93e — 02 3
297 | 4.19e — 03 10 3.10e — 02 7.4 | 3.59 — 02 8
412 | 3.21e — 04 6 6.75¢ — 04 2.1 | 9.98e — 03 3
081 | 3.09e — 05 ) 4.02¢e —05 1.3 |5.34e—03 173
812 | 4.32e — 06 ) 5.19e—06 1.2 | 1.34e—03 310
1113 | 4.21e — 07 ) 5.06e — 07 1.1 | 3.29¢e—04 781

Table. Computation of dju(xy) for smooth solution
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Figure. Configuration of the test problem (left), optimized distribution of p by 7,
(middle), and by ng (right)

As expected the automatic adaptation process keeps the initial mesh unrefined and only
raises p. We see that for computing point values, hp adaptivity based on the weighted
error estimator 7, is more efficient than that using the energy error estimator 7g .
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The fully singular case

N Ju(e) N/In(J,)? | mw(us) Lg Jr(e) Je/J.,
740 | 2.02e — 01 289 9.6le+ 00 47.6 | 8.56e — 02 1
1138 | 8.45e¢ — 03 50 1.96e — 01 23.3 | 4.65e — 02 6
1467 | 3.45e¢ — 03 45 4.31le — 02 12.5 | 6.48e — 03 2
1736 | 8.43e — 04 34 6.65e — 03 7.9 | 8.32¢e —03 10
2284 | 7.73e — 05 25 247e—04 3.2 | 2.23e — 03 29
2943 | 8.72e — 06 22 2.00e — 05 2.3 | 3.32¢e —04 38
3752 | 8.34e — 07 19 1.50e — 06 1.8 | 8.7le—05 104
5372 | 3.34e — 08 18 3.60e —08 1.1 [9.32¢e—-06 282
6156 | 4.43e — 10 15 4.87e—10 1.1 | 1.37e—07 309

Table. Computation of 0,u(xy) with varying A and p
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Figure. Optimized h and p by 7, for TOL ~ 1075 (left) and TOL ~ 10™° (middle),
and by 7 (right)

The weighted error estimator 7, is asymptotically sharp and more efficient for computing
the point value 0ju(P) than the energy-error estimator 7.
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Figure. Zooms into optimized meshes by 7, (left) and ng (right)
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Figure. Efficiency of hp adaptation using the weighted and the energy-error estimators
Nw and e
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