
✫ ✪

Parallel Programming

Using OpenMP

Tor Sørevik
University of Bergen

Winter School in
Computational Mathematics,

Geilo 27/3 2001

1 ✫ ✪

Outline

1. SMP programming philosophy

2. Directive based OpenMP

(a) Work sharing constructs

(b) Data environment constructs

(c) Synchronization constructs

(d) Environment variables

(e) An example

3. Explicit Multi threaded programming with OpenMP

(a) Environment routines

(b) Examples

4. Tricks of the trade for efficient OpenMP program-
ming

2

✬

✫

✩

✪

Work partition vs Data partition

Parallel programming is about distributing work between
cooperating processors.

This can be done implicitly by distributing the data and
letting the different processors work on their slice of the
data.

When memory is physically distributed you HAVE to
do data partition. Synchronization and collaboration is
done by exchanging data. (= Message passing)

With a global accessible memory, you might assume all
data is available, forget about data partition and zoom
in on work partition.

THIS IS THE CORE OF SMP PROGRAMMING.

3

✬

✫

✩

✪

Why SMP programming

The sales pitch:

• When inspecting (sequential) code you can (in many
case) determine which operations are independent.
Thus work sharing is potentially easier to produce
parallelizing compilers for.

• Why bother distributing data on a shared memory
system?

• You can parallelize your code incrementally

• There is only one code to maintain. The sequential
and parallel code is the same.

But don’t forget:

• Not all parallel system are shared memory. Thus
Message passing applies to a larger class of parallel
systems.

• There is no true UMA (Uniform Memory Access)
system. This makes data locality crucial for perfor-
mance. Message passing gives better control over
data distribution.

4

✫ ✪

OpenMP History

• Introduced October 1997

• No new features. Only meant to standardize current
practice.

• Designed to be a De facto industry standard. (and
it is!)

• Supported by all major vendors (and controlled by
the vendors!)

• ”lean and mean”. ⇒ A small set of directives and
only those that everyone agrees on.

• Available for Fortran (version 2.0 released Nov. 2000)
and C/C++(version 1.0 released Oct. 1998)

• Supported on all major platforms!

5 ✫ ✪

The ”fork and join” model

All OpenMP programs are started on ONE thread.

When an OpenMP directive or a call to an OpenMP
function is found multiple threads are created (forking).

The original thread becomes the master thread.

When the parallel region ends. The execution continues
sequentially on the master thread.

Sequential

Parallel
Region

Sequential
Region

Parallel
Region

Region

NB! Forking and Joining is not without cost.

6

✬

✫

✩

✪

Parallel regions

The magic directive:

FORTRAN version:

!$OMP PARALLEL [clause,..]

A block of code to be executed in parallel
!$OMP END PARALLEL

C/C++ version:

#pragma omp parallel [clause,..] {
A block of code to be executed in parallel

}

NOTE: When compiled without parallelization switch,
the directives are ignored.

7

✬

✫

✩

✪

Work sharing constructs

Do-loops:

!$OMP PARALLEL

!$OMP DO

DO I = 1,N

A(I) = A(I) + B(I)

ENDDO

!$OMP END DO ! Optional

!$OMP END PARALLEL

Fortran-90 Array syntax:

!$OMP WORKSHARE

A = A + B

!$OMP END WORKSHARE

8

✫ ✪

More Work sharing constructs

Sections:

!$OMP SECTIONS

!$OMP SECTION

CALL SUB1 (A)

!$OMP SECTION

CALL SUB2 (B)

!$OMP SECTION

CALL SUB3 (C)

!$OMP END SECTIONS

9 ✫ ✪

Variants Work sharing constructs

Multiple constructs:

!$OMP PARALLEL

!$OMP WORKSHARE

A = C + B

!$OMP END WORKSHARE

!!

!! No need to join and fork the threads

!!

!$OMP DO

DO I = 1,N

A(I) = A(I) + B(I)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

Short forms:

!$OMP PARALLEL DO

DO I = 1,N

A(I) = A(I) + B(I)

ENDDO

!$OMP END PARALLEL DO

10

✬

✫

✩

✪

Data scope clauses

What if we do?

!$OMP PARALLEL DO

DO I = 1,N

TMP = A(I) * C/B(I)

A(I) = A(I) + TMP

ENDDO

!$OMP END PARALLEL DO

Each thread needs its unique TMP!!

Variables which needs to be unique to each thread must
be specified as PRIVATE

Variables which is shared either because they are read-
only or because they are arrays which updates are par-
allelized must be specified as SHARED

!$OMP PARALLEL DO PRIVATE(I,TMP),SHARED(A,B,C)

DO I = 1,N

TMP = A(I) * C/B(I)

A(I) = A(I) + TMP

ENDDO

!$OMP END PARALLEL DO

11

✬

✫

✩

✪

More Data scope clauses

LASTPRIVATE extends PRIVATE. Keeps a well defined
copy of a PRIVATE variable at exit.

!$OMP PARALLEL DO PRIVATE(I,J), SHARED (A,C)

!$OMP& LASTPRIVATE(X)

DO I = 1,N

X = C(I)**2

DO J = 1,N

A(I,J) = A(I,J) + C(I)*X

ENDDO

ENDDO

!$OMP END PARALLEL DO

PRINT*,X !! Will print X = C(N)**2

12

✫ ✪

..and more Data scope clauses

FIRSTPRIVATE extends PRIVATE. Initialize all copies of
PRIVATE variables.

!$OMP PARALLEL DO PRIVATE(I, J), SHARED (A,B)

!$OMP& FIRSTPRIVATE(Y)

DO I = 1,N

DO J = 1,N

Y = B(I,J) + Y

A(I,J) = A(I,J) -Y

ENDDO

ENDDO

!$OMP END PARALLEL DO

13 ✫ ✪

Default data scope

The default scope is SHARED
The exception for this is do-loop control variables.
The default might be overwritten by the DEFAULT -
clause

!$OMP PARALLEL DO DEFAULT(PRIVATE),SHARED(A,B,C)

DO I = 1,N

TMP = A(I) * C/B(I)

A(I) = A(I) + TMP

ENDDO

!$OMP END PARALLEL DO

14

✬

✫

✩

✪

The Reduction clause

!$OMP PARALLEL DO REDUCTION(+: A SUM, B SUM)

DO I = 1,N

A SUM = A SUM + A(I)

B SUM = B SUM + B(I)

ENDDO

!$OMP END PARALLEL DO

The following operators and intrinsic functions are al-
lowed:
+, -, *, .AND., .OR., .EQV., .NEQV.
MAX, MIN, IAND, IOR, IEOR

15

✬

✫

✩

✪

Synchronization constructs

Suppose we have:

DO I = 1,N

XTMP = FUN1(I) ! Mflops computing

X(INDEX(I)) = X(INDEX(I)) + XTMP

ENDDO

When parallelizing, we might create write conflict if dif-
ferent instance of I gives same index for X. We do:

!$OMP PARALLEL DO PRIVATE(XTMP),SHARED(X,INDEX)

DO I = 1,N

XTMP = FUN1(I) ! Mflops computing

!$OMP ATOMIC

X(INDEX(I)) = X(INDEX(I)) + XTMP

ENDDO

!$OMP END PARALLEL DO

16

✫ ✪

more synchronization constructs

If we have a block of code need to be computed in a
given order:

!$OMP PARALLEL DO PRIVATE(XTMP),SHARED(X,INDEX)

DO I = 1,N

XTMP = FUN1(I) ! Mflops computing

!$OMP CRITICAL

X(INDEX(I)) = X(INDEX(I)) + XTMP

!$OMP END CRITICAL

ENDDO

!$OMP END PARALLEL DO

ATOMIC applies only to the next statement, while CRITICAL
applies to a block of code.

17 ✫ ✪

More synchronization constructs

!$OMP PARALLEL

!$OMP DO

Block of code to be executed in parallel

!$OMP END DO [NOWAIT]

!$OMP SINGLE

BoC to be executed by one thread only

!$OMP END SINGLE

!$OMP BARRIER

!$OMP DO

BoC to be executed in parallel

!$OMP CRITICAL

BoC to be executed sequentially

!$OMP END CRITICAL

!$OMP END DO [NOWAIT]

!$OMP MASTER

BoC to be executed by the master thread

!$OMP END MASTER

!$OMP DO

BoC to be executed in parallel

!$OMP END DO

!$OMP END PARALLEL

18

✬

✫

✩

✪

Load balancing

!$OMP PARALLEL DO PRIVATE(I,J),SHARED(X,L,Y)

DO I = 1,120

X(I) =0

DO J = I,N

X(I) = X(I) + L(I,J)* Y(J)

ENDDO

ENDDO

!$OMP END PARALLEL DO

The default scheduling (called STATIC) gives on 4 pro-
cessors:

Thread 0: Does I =1,...,30 ⇒ 6330 flops
Thread 1: Does I =31,...,60 ⇒ 4530 flops
Thread 2: Does I =61,...,90 ⇒ 2730 flops
Thread 3: Does I =91,...,120 ⇒ 930 flops

19

✬

✫

✩

✪

OTHER SCHEDULINGS

SCHEDULE(STATIC,[chunk]):
Divides the iteration in slices of size chunk and dis-
tribute these cyclic.
Default chunk = N/P.

SCHEDULE(DYNAMIC,[chunk]):
Divides the iteration in slices of size chunk. Each thread
starts with the same chunk as in STATIC,[chunk], but
the remaining chunk’s are processed at a first-come-first-
served bases.
Default chunk = 1.

SCHEDULE(GUIDED,[chunk]):
The size of the chunk’s increase exponentially (!?). De-
fault first chunk = 1.

The scheduling can be defined as a clause to !$OMP DO

20

✫ ✪

Environment Variables

The scheduling can also be set by an environment vari-
able

setenv OMP SCHEDULE "STATIC, 4"

setenv OMP SCHEDULE "DYNAMIC"

This is also the best way to set the number of threads

setenv OMP NUM THREADS 16

21 ✫ ✪

Explicit Multi threading

A set of functions to be called from your parallel program
is available:

OMP SET NUM THREADS: Sets the number of threads to
be used in subsequent parallel regions

OMP GET NUM THREADS: Returns the number of threads
in the team executing the parallel region

OMP GET MAX THREADS: Returns the maximum value
that can be returned by OMP GET NUM THREADS

OMP GET THREAD NUM: Returns the thread number of
the thread. A number between
0 .. OMP GET NUM THREADS - 1

OMP GET NUM PROCS : Returns the number of proces-
sors available to the program.

22

✬

✫

✩

✪

Ex: Explicit Multi threading

Example:

!$OMP PARALLEL

NTHREADS = OMP GET NUM THREADS ()

BLOCK = N/NTHREADS

IF (MOD(N,NTHREADS).NE.0)BLOCK=BLOCK+1

IAM = OMP GET THREAD NUM()

DO I = 1+IAM*BLOCK, MIN((IAM+1)*BLOCK,N)

A(I) = A(I) + B(I)

ENDDO

!$OMP END PARALLEL

23

✬

✫

✩

✪

Ex: 1D Poisson equation

.......

dx = 1.0/(n+1);

x = 0.0;

for (i = 0; i<=n+1; i++) {
x += dx;

rhs[i] = dx*dx*PI*PI*sin(PI*x);

x k[i] = x k1[i] = 0.0;

}
base = norm(n, rhs);

r norm = 1.0;

i = 0;

/* main loop */

while (i<1000 && (r norm/base) > 1.0e-4) {
i++;

jacobi iteration(n, rhs, x k1, x k);

calc residual(n, rhs, x k1, res);

r norm = norm(n,res);

for (j = 1; j<=n; j++) x k1[j] = x k[j];

}
free (x k); free (x k1); free (rhs); free (res);

return 0;

24

✫ ✪

Ex continues: Functions

void jacobi iteration (int n, double* rhs,

double* x k1, double* x k){
int i;

for (i = 1; i<=n; i++)

x k[i] = 0.5*(rhs[i]+x k1[i-1]+x k1[i+1]);

}
void calc residual (int n, double* rhs,

double* x, double* res){
int i;

for (i = 1; i<=n; i++)

res[i] = rhs[i]+x[i-1]-2*x[i]+x[i+1];

}
double norm(int n, double* x){

double sum = 0.0;

int i;

for (i = 1; i<=n; i++)

sum += x[i]*x[i];

return sqrt(sum);

}

25 ✫ ✪

OpenMP1; Simple directives

void jacobi iteration (int n, double* rhs,

double* x k1, double* x k){
int i;

#pragma omp parallel for private(i)

for (i = 1; i<=n; i++)

x k[i] = (rhs[i]+x k1[i-1]+x k1[i+1])/2;

}
void calc residual (int n, double* rhs,

double* x, double* res){
int i;

#pragma omp parallel for private(i)

for (i = 1; i<=n; i++)

res[i] = rhs[i]+x[i-1]-2*x[i]+x[i+1];

}
double norm(int n, double* x){

double sum = 0.0;

int i;

#pragma omp parallel for reduction(+:sum)

for (i = 1; i<=n; i++)

sum += x[i]*x[i];

return sqrt(sum); }

26

✬

✫

✩

✪

OpenMP1; Simple directives,
comments

Problem 1: Threads are created 4 times in every iter-
ation!

We would like to set #pragma omp parallel in the
main routine and only #pragma omp for in front of
each loop of the subroutine.
But than each thread is making its individual call to the
different functions.
In that case all local variables within the functions are
private to the calling thread. This prohibits reduction
on sum!!

Problem 2: Data distribution! This is a cc-NUMA
problem.
When memory is physical distributed it is important
that data is allocated physically close to the processor
using it.

27

✬

✫

✩

✪

Memory bottleneck in cc-NUMA

This is a 16 CPU Origin 2000 system. 8 CPUs are fetch-
ing data from the same memory location.

The Origin 2000’s policy for data layout is: first touch
policy
Thus sequential initialization puts all data in one mem-
ory module!!
Solution: Parallelize initialization

28

✫ ✪

OpenMP; Explicit Threading

#pragma omp parallel private(id,j,iter,step) {
threads = omp get max threads();

id = omp get thread num();

n del = (n+1)/threads;

for (i = 0; i<=threads-1; i++) {
ibeg[i] = i*n del + 1;

iend[i] = (i+1)*n del; }
#pragma omp barrier

while (iter++<1000 && (r norm[0]/base)>1.0e-4){
jacobi iteration(id, ibeg, iend, n, rhs, ...);

calc residual(id, ibeg, iend, n, rhs, ...);

r norm[id] = norm(id, ibeg, iend, n, res);

for (step = 1; step < threads; step *=2){
#pragma omp barrier

if (id%(step*2) == 0)

r norm[id] += r norm[id+step]; }
if (id == 0) r norm[id] = sqrt(r norm[id]);

for (j = ibeg[id]; j<=iend[id]; j++)

x k1[j] = x k[j];

#pragma omp barrier

}

29 ✫ ✪

OpenMP; Explicit Threading

void jacobi iteration(int id, int* ibeg, int* iend,

int n, double* rhs, double*x k1, double* x k)

{
int i;

for (i = ibeg[id]; i<=iend[id]; i++)

x k[i] = 0.5*(rhs[i]+x k1[i-1]+x k1[i+1]);

}
void calc residual(int id, int* ibeg, int* iend,

int n, double* rhs, double* x, double* res){
int i;

for (i = ibeg[id]; i<=iend[id]; i++)

res[i] = rhs[i]+x[i-1]-2*x[i]+x[i+1];

}
double norm(int id, int* ibeg, int* iend, int n,

double* x){
double sum = 0.0;

int i;

for (i = ibeg[id]; i<=iend[id]; i++)

sum += x[i]*x[i];

return sum;/* NB only a local sum!*/

}

30

✬

✫

✩

✪

Speed up results

The Jacobi-iteration for 1-D Poisson equation.
N = 99999

No of Directives Directives Explicit
CPUc Seq. Init Par. Init Multi threading
1 1.00 1.00 1.00
2 1.95 2.01 2.05
4 3.88 3.98 3.99
8 6.62 7.50 7.60
16 11.50 12.30 14.30

31

✬

✫

✩

✪

Auto parallelizers

There are tools which inspect a code, finds parallel con-
struct and inserts directives.

Most vendors have bundled this with their compiler.

+ Saves a lot of work

+ What they, they do right (Put the right variables in
PRIVATE or SHARED clauses.

+ Gives good hints on why a specific loop is not paral-
lelizable

- Can’t handle subroutine calls within a loop

- Don’t know when

DO I = 1,N
A(INDEX(I)) = A(INDEX(I)) + B(I)

ENDDO

Good strategy: Start with auto parallelizer, continue
with inserting directives.

32

✫ ✪

Tricks of the trade

• Parallel bugs are much more difficult to find than
sequential. Therefor: Do your parallelization
step by step

• Try always to parallelize outer loop.

• For efficiency you have to be aware of data access.
But in OpenMP you don’t have the same explicit
control over it as in MPI.

• Parallelization directives very often prohibits the com-
piler to do sequential optimization. (Inter-
changing nested loops, loop fission, ...)

• Watch out for false sharing. i.e. Two (or more)
CPUs are updating different data on the same cache
line.

Exercise: Interchange the loops in the Triangular matrix-
vector code and parallelize it.

33

