

Hydrogen supply and CO₂ injection and storage

http://www.elegancy.no/

Webinar, 2020-06-22

Hydrogen supply and CO₂ injection and storage

10:00	• Part 1: Low-carbon hydrogen supply with CCS	• Part 2: CO ₂ transport, injection and storage
	 Welcome Advanced property models for processing, transport and storage of gas mixtures containing H₂ Roland Span (Ruhr-University Bochum) Optimization of sorption enhanced WGS for use with basic oxygen furnace gas from the steel plant Jean-Pierre Pieterse (TNO) Biomass to hydrogen with CCS: can we go negative? Cristina Antonini (ETH) 	 Introduction Svend Tollak Munkejord (SINTEF) The influence of thermodynamic properties on CO₂ storage in saline aquifers Martin Trusler (Imperial College London) Towards an accurate and consistent description of thermodynamic properties of mixtures of CO₂ with brines Roland Span (Ruhr-University Bochum) Depressurization of CO₂-N₂ and CO₂-He in a tube Svend Tollak Munkejord (SINTEF)
	 Demonstration of VPSA for CO₂-H₂ co-production Anne Streb (ETH) 	 Laboratory studies to understand the controls on flow and transport for CO₂
	 Life Cycle Analysis of low-carbon H₂ supply with CCS Karin Treyer (Paul Scherrer Institute) 	 Ronny Pini and Sam Krevor (Imperial College London) Mt. Terri experiment: Fault trapping
11:30	• Break	 Antonio Pio Rinaldi and Alba Zappone (ETH) Microbial activity in response to H₂ in a CO₂-rich stream Simon Gregory (BGS)

14:00

•

End of webinar

WP1 Low carbon hydrogen supply with CCS

Mijndert van der Spek, deputy-WP leader ETH, ECN, UU, RUB Webinar, 2020-06-22 WP1 enabled the efficient production and supply of H_2 with CO_2 capture by...

- Developing an intensified process that combines CO₂ separation and H₂ purification into a single, energy efficient, adsorption unit
- Synergistically developing new adsorbent-process combinations, thereby fast-tracking technology development
- Validating that commercially sold water-gas shift sorbents can perform durably in high CO/CO₂ steelworks off-gases
- Developing SEWGS technology towards TRL7 demonstration on steel off-gases: the final step before commercial roll out
- Combining hydrogen production and CO₂ capture into optimised plant configurations, including hydrogen from biogenic sources
- Significantly improving the thermodynamic models for CO₂ and H₂ mixtures, helping to derisk the development of production and transport infrastructure

ELEGANCY – WP1 overview

WP2 CO₂ transport, injection and storage

Svend Tollak Munkejord, WP leader SINTEF, BGS, SCCER, ICL, RUB Webinar, 2020-06-22 Facilitating the engineering of transport and storage systems for CO_2 stemming from hydrogen production by...

- Improved prediction of the properties of CO₂ mixed with hydrogen
- Providing a realistic description of CO₂ pipeline and injection operations including startup and shutdown
- Validated experimental and modelling approach to allow safe and effective CO₂ storage in underground rocks
- Understanding the hydrogen-stimulated microbial response to CO₂ injection in underground rocks
- Combined laboratory and field experiments with advanced modelling

ELEGANCY WP2 – interconnections

Acknowledgement

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), BMWi (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco, Equinor and Total, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712.

Contact: Svend Tollak Munkejord, svend.t.munkejord@sintef.no