WP5 Dutch Case study

TNO: Floris van de Beek, Robert de Kler UU: Lukas Weimann, Gert Jan Kramer, Matteo Gazzani

19 June 2020

CO₂ emissions per province (2017)

related to industry, waste incineration and electricity production

The Dutch case study

- Multi-energy systems tool (UU)
 - Feasibility of clean hydrogen from renewables for industry
 - Decarbonization of the Dutch steel industry
- Chain tool framework (TNO)
 - Chemical industry in Rotterdam
 - Decarbonization of the Dutch industry and electricity sector

Modeling framework (MES – tool)

- Developed and applied by ETH and UU
- Mixed integer linear programming (MILP)
- Optimization of multi-energy systems (MES)
- Focus on conversion technologies

Feasibility of hydrogen from renewables for industry

Clean hydrogen from renewables for industry?

- Can the Netherlands supply the industrial demand with hydrogen from renewables? (technical feasibility)
- Would the application of H₂ for dispatching renewable energy generation benefit from increased scale due to industrial demand?
- How much would it cost? (economic viability)

Can the Netherlands supply the industrial demand with hydrogen from renewables?

Average E-demand: 12.4 GW (18.6 GW peak) Average H₂-demand: 2.2 GW (2.2 GW peak) Would the application of H₂ for dispatching renewable energy generation benefit from increased scale due to industrial demand?

Would the application of H₂ for dispatching renewable energy generation benefit from increased scale due to industrial demand?

Would the application of H₂ for dispatching renewable energy generation benefit from increased scale due to industrial demand?

	No H ₂ demand	Industrial H ₂ demand
Fuel cell output [GWh/y]	4.78	0.47
Share of E-demand [%]	4.4	0.4

Preliminary results

How much would it cost?

	No H ₂ demand	Industrial H ₂ demand
System cost [bil-EUR/y]	33	40
Added cost [bil-EUR/y]	-	7
H ₂ cost [EUR/kWh]	-	0.4
H ₂ cost [EUR/kg]	-	13.3

Preliminary results

H₂ becomes cheaper if 0-emission constraint is relaxed.
 However, to be compatible with conventional H₂, electricity must have a carbon footprint of less than ~170 g/kWh_e, which corresponds to 45+% renewable share.

Decarbonization of the Dutch steel industry

Challenges of the steel industry

- Low profit margins and strong competition from China
- Long equipment lifetime
- Energy intensive processes with limited capacity for renewables onsite
- High level of process-integration
- Power island (high autarky) as preferred configuration

TATA Steel: key facts and figures

- 7.2 Mton steel per year (4% of European steel production)
- 13 Mton CO_{2,eq} per year (7% of total Dutch emissions)

350 m

TATA Steel: key facts and figures

- 7.2 Mton steel per year (4% of European steel production)
- 13 Mton CO_{2,eq} per year (7% of total Dutch emissions)

Origin of CO₂ emissions

Keys et al., Decarbonisation options for the Dutch steel industry, 2019, MIDDEN project

Research objective

Investigate the impact of measures to decrease process emissions on the energy system

Origin of CO₂ emissions

Keys et al., Decarbonisation options for the Dutch steel industry, 2019, MIDDEN project

Decarbonization routes

Decarbonization routes

Electrification of Heat

Maximum electrification of heat

 Replacement of one BF (3 Mt/y)

 Replacement of one BF (3 Mt/y)

- 1. Increase capacity of renewables, e.g. off-site
- 2. Tap into green national grid

How can the steel industry go for deep decarbonization?

- 1. Increase capacity of renewables, e.g. off-site
- 2. Tap into green national grid
- 3. Apply CCS to C-rich gas products of current steelworks processes (e.g. SEWGS, post-combustion)
- 4. Use new steelworks processes empowered by CCS (Hisarna, direct reduction with blue H₂)

5. Use hydrogen from renewables

Decarbonization of the Rotterdam area using hydrogen

Decarbonization of refineries in Rotterdam is feasible and straightforward in terms of spatial planning

0.75 GW

0.29 GW

Reference to H-vision 1: <u>https://www.deltalinqs.nl/h-vision-en</u> <u>https://blog.sintef.com/sintefenergy/elegancy-tno-h-vision-project/</u>

H, plant

0.80 GW

Reference scope

0.80 GW

0.56 GW

Decarbonization of the Dutch industry and electricity production using the Elegancy chain tool

Dutch energy system from 2025 on – overview and key figures

55 TWh/a electricity demand
115 TWh/a industrial heat demand
50 TWh/a hydrogen feedstock demand
6 Mton/a CO₂ waste incineration emissions

95 TWh/a offshore **gas production** 890 Mton **CO₂ storage** capacity

Existing **gas** and **hydrogen** backbone 375 TWh/a **gas import** capacity (incl LNG)

Existing electricity network (copper plate) 45 TWh/a **electricity demand** Onshore wind/PV – increasing capacity

Offshore wind – increasing **RES** capacity

Different decarbonization tactics are on the table for the industry and electricity sector

National case scenario's

CAPEX, OPEX, resource cost and emission cost

Optimized spatial network

*Corresponding to scenario's II, III and IV from "De Toekomst van de Noordzee", PBL (2018)

Emission reduction targets can be achieved using hydrogen under all scenarios -13% 90 80 70 Offshore wind Emissions [mton CO₂/a] scenarios 60 -49% base 50 low 40 mid -72% 30 high 20 10 -95% w.r.t. 1990 0 2017 2030 2050 2040

Based on the chain tool methodology without market dynamics, hydrogen from renewable electricity will only play a minor role?

Existing Dutch gas infra can facilitate a transition to hydrogen

LNG

Snapshot 2050 CO₂ infrastructure (new) Hydrogen infrastructure

Results of the Dutch case study – key take-aways

2050

- Deep decarbonization of the industry requires CCS on the short term
- Dutch offshore gas field capacity for CO₂ storage provide sufficient capacity
 - to support a blue hydrogen transition while decarbonizing the (petro-) chemical industry and waste incineration up to 95% in 2050 (w.r.t. 1990)
- Existing gas transmission infrastructure is sufficient

2020

- to accomodate this transition, with the exception of currently absent CO₂ infrastructure
- Market dynamics are required to paint a more representative picture

2040

• Of the hydrogen market in terms of different production methods

2030

Image sources

- Slide 22
 - <u>http://homework.uoregon.edu/pub/class/climate_change/ccs.html</u>
 - Gazzani et al., International Journal of Greenhouse Gas Control, 2015 (41), 249-267
 - <u>https://teara.govt.nz/en/diagram/5885/electric-arc-furnace</u>
 - <u>https://ieaghg.org/docs/General_Docs/Iron%20and%20Steel%202%20Secure</u> <u>d%20presentations/2_1330%20Jan%20van%20der%20Stel.pdf</u>
 - Steel Institute VDEh, European Steel: The wind of change, 2018