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CO2 emissions per province (2017) 
related to industry, waste incineration and electricity production
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The Dutch case study

• Multi-energy systems tool (UU)
• Feasibility of clean hydrogen from

renewables for industry

• Decarbonization of the Dutch steel 
industry

• Chain tool framework (TNO)
• Chemical industry in Rotterdam

• Decarbonization of the Dutch 
industry and electricity sector
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Modeling framework (MES – tool)
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• Developed and applied by ETH 
and UU

• Mixed integer linear 
programming (MILP)

• Optimization of multi-energy 
systems (MES)

• Focus on conversion 
technologies

Gabrielli et al., Appl. Energy 2018 (219) & Appl. Energy 2018 (221)



Feasibility of hydrogen from renewables for industry



Clean hydrogen from renewables for 
industry?

• Can the Netherlands supply the industrial demand with 
hydrogen from renewables? (technical feasibility)

• Would the application of H2 for dispatching renewable energy 
generation benefit from increased scale due to industrial 
demand?

• How much would it cost? (economic viability)
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Can the Netherlands supply the industrial 
demand with hydrogen from renewables? 
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Average E-demand: 12.4 GW (18.6 GW peak)
Average H2-demand: 2.2 GW (2.2 GW peak)

Conversion Technologies Storage Technologies



Would the application of H2 for dispatching 
renewable energy generation benefit from 
increased scale due to industrial demand?
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Production
21 TWh



Would the application of H2 for dispatching 
renewable energy generation benefit from 
increased scale due to industrial demand?
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Demand
18.9 TWh

Loss
1.2 TWh

Buffer
0.9 TWh



Would the application of H2 for dispatching 
renewable energy generation benefit from 
increased scale due to industrial demand?
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No H2 demand Industrial H2 demand

Fuel cell output [GWh/y] 4.78 0.47

Share of E-demand [%] 4.4 0.4

Preliminary results



How much would it cost?

14

No H2 demand Industrial H2 demand

System cost [bil-EUR/y] 33 40

Added cost [bil-EUR/y] - 7

H2  cost [EUR/kWh] - 0.4

H2  cost [EUR/kg] - 13.3

Preliminary results

H2 becomes cheaper if 0-emission constraint is relaxed. 
However, to be compatible with conventional H2, electricity must have a carbon footprint 

of less than ~170 g/kWhe, which corresponds to 45+% renewable share.



Decarbonization of the Dutch steel industry



Challenges of the steel industry

• Low profit margins and strong competition from China

• Long equipment lifetime

• Energy intensive processes with limited capacity for renewables on-
site

• High level of process-integration

• Power island (high autarky) as preferred configuration
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TATA Steel: key facts and figures

• 7.2 Mton steel per year 
(4% of European steel 
production)

• 13 Mton CO2,eq per year 
(7% of total Dutch 
emissions)
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TATA Steel: key facts and figures

• 7.2 Mton steel per year 
(4% of European steel 
production)

• 13 Mton CO2,eq per year 
(7% of total Dutch 
emissions)
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Origin of CO2 emissions

Pellet&Sinter
4%

Keys et al., Decarbonisation options for the Dutch steel industry, 2019, MIDDEN project 



Research objective

Investigate the impact of 
measures to decrease 

process emissions on the 
energy system
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Origin of CO2 emissions

Pellet&Sinter
4%

Keys et al., Decarbonisation options for the Dutch steel industry, 2019, MIDDEN project 



Decarbonization routes
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Direct Reduction 
through Hydrogen

Post-combustion 
capture

Electric Arc Furnace

Electrification of
Heat

Hisarna

Sorption Enhanced
Water-Gas-Shift

Conventional 
steel making

Novel ways of
steel making

Images blurred in open-access version for copyright reasons



Decarbonization routes
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Electric Arc FurnaceElectrification of
Heat

Hisarna

• Maximum electrification 
of heat

• Replacement of one BF 
(3 Mt/y)

• Replacement of one BF 
(3 Mt/y)

5%
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Electricity

Natural gas

Heat
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... and their effect on the energy system
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Reference: current energy system of TATA steel, 
simulated in MES-tool

MES: Energy system redesigned to 
minimize emissions

Emissions for electricity from grid: 371 g/kWh 



... and their effect on the energy system
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Reference: current energy system of TATA steel, 
simulated in MES-tool

MES: Energy system redesigned to 
minimize emissions

Emissions for electricity from grid: 371 g/kWh 



... and their effect on the energy system
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Reference: current energy system of TATA steel, 
simulated in MES-tool

MES: Energy system redesigned to 
minimize emissions

Emissions for electricity from grid: 371 g/kWh 



... and their effect on the energy system
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Reference: current energy system of TATA steel, 
simulated in MES-tool

MES: Energy system redesigned to 
minimize emissions

Emissions for electricity from grid: 371 g/kWh 



How can the steel industry go for deep 
decarbonization?

1. Increase capacity of renewables, e.g. off-site

2. Tap into green national grid
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How can the steel industry go for deep 
decarbonization?

1. Increase capacity of renewables, e.g. off-site
2. Tap into green national grid

3. Apply CCS to C-rich gas products of current steelworks processes 
(e.g. SEWGS, post-combustion)

4. Use new steelworks processes empowered by CCS (Hisarna, 
direct reduction with blue H2)

5. Use hydrogen from renewables
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Decarbonization of the Rotterdam area using hydrogen
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Decarbonization of refineries in 
Rotterdam is feasible and straight-
forward in terms of spatial planning

Reference scope

Reference to H-vision 1: 
https://www.deltalinqs.nl/h-vision-en
https://blog.sintef.com/sintefenergy/elegancy-tno-h-vision-project/

https://www.deltalinqs.nl/h-vision-en
https://blog.sintef.com/sintefenergy/elegancy-tno-h-vision-project/


Decarbonization of the Dutch industry and electricity production using the Elegancy chain tool



Dutch energy system 
from 2025 on –
overview and key figures

55 TWh/a electricity demand
115 TWh/a industrial heat demand
50 TWh/a hydrogen feedstock demand
6 Mton/a CO2 waste incineration emissions

95 TWh/a offshore gas production
890 Mton CO2 storage capacity

Existing gas and hydrogen backbone
375 TWh/a gas import capacity (incl LNG)

Existing electricity network (copper plate)
45 TWh/a electricity demand
Onshore wind/PV – increasing capacity

Offshore wind – increasing RES capacity
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Sources: klimaatmonitor, 
CBS, DNVGL, ENTSOG, 
Neele et al. (2018)

LNG
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Different decarbonization tactics are on the
table for the industry and electricity sector

H2

H H
SMR Electrolysis/ATR

Existing New

Natural/fuel gas

Natural/fuel gas

Natural gas/
Fuel gas

Waste Biomass
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Offshore wind scenarios
(low/mid/high)*

CO2 price
Emission

reduction targets

*Corresponding to scenario’s II, III and IV from “De Toekomst van de Noordzee”, PBL (2018)

Electricity price

constant €57/MWh

Gas price

constant €28/MWh

Optimization based on following KPI’s:
CAPEX, OPEX, resource cost and emission cost

Optimized spatial network
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Emission reduction targets can be achieved
using hydrogen under all scenarios
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Based on the chain tool methodology without 
market dynamics, hydrogen from renewable
electricity will only play a minor role?
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Renewable electricity
Natural gas



Existing Dutch gas 
infra can facilitate a 
transition to hydrogen

Snapshot 2050

• CO2 infrastructure (new)

• Hydrogen infrastructure
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LNG



Results of the Dutch case study
– key take-aways
• Deep decarbonization of the industry requires CCS on the short term

• Dutch offshore gas field capacity for CO2 storage provide sufficient capacity
• to support a blue hydrogen transition while decarbonizing the (petro-) chemical

industry and waste incineration up to 95% in 2050 (w.r.t. 1990)

• Existing gas transmission infrastructure is sufficient
• to accomodate this transition, with the exception of currently absent CO2

infrastructure

• Market dynamics are required to paint a more representative picture 
• Of the hydrogen market in terms of different production methods
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2020 2030 2040 2050 ?



Image sources

• Slide 22
• http://homework.uoregon.edu/pub/class/climate_change/ccs.html

• Gazzani et al., International Journal of Greenhouse Gas Control, 2015 (41), 
249-267

• https://teara.govt.nz/en/diagram/5885/electric-arc-furnace

• https://ieaghg.org/docs/General_Docs/Iron%20and%20Steel%202%20Secure
d%20presentations/2_1330%20Jan%20van%20der%20Stel.pdf

• Steel Institute VDEh, European Steel: The wind of change, 2018
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