

THE GERMAN HYDROGEN STRATEGY

The European research project ELEGANCY – Webinar | 18 June 2020

PROF. DR.-ING. WOLFGANG MARQUARDT

Mitglied der Helmholtz-Gemeinschaft

Requirements:

- No net emissions of greenhouse gases in 2050
- Reliable and cost-effective energy supply
- Growth of national economy

abaddad in

- Embedded in:
- National economic Corona stimulus plan
- Germany's 2020 EU Council presidency
- Energy transition plan

GOALS AND AMBITIONS

- \succ use green H₂
- take global responsibility for reducing green house gases
- \succ make H₂ competitive
- develop a national market
- \succ prepare reliable paths for H₂ imports
- \succ establish H₂ as alternative fuel
- promote research and innovation
- ➤accelerate transition processes
- > establish high safety standards for broad acceptance
- > become No. 1 in H_2 technology

FINANCIAL VOLUME

So far already:

- 2.1 billion € : National innovation program for H₂ and fuel cell technology (2006-2026)
- 0.3 billion € : Energy and climate fond (2020-2023)
- 0.2 billion € : Application oriented fundamental research (2020-2023)
- 0.6 billion € : Reality labs for energy transition (2020-2023)
- 1.0 billion € : National decarbonisation program (2020-2023)

New:

• 9.0 billion € : as part of the national economic stimulus program

ROADMAP 2nd phase: **Two phases** Strengthen market launch nationally and internationally (2 billion €) 2030 1st phase: Start market launch, 2023 taking the opportunity (7 billion €) 2020

GOVERNANCE STRUCTURE

ACTION PLAN

Generation of H2:

- improve boundary conditions
- test new business plans
- funding of electrolyzers
- off-shore wind energy

Applications:

- green H_2 for fuel production
- mobility sector
- kerosene, bio-fuels
- H₂ filling stations
- international standardization

ACTION PLAN

Industry:

- CO₂-free technologies
- electrolysis plants
- dialogue platforms for decarbonisation strategies
- fuel cell based heating systems in buildings

Infrastructure/Supply:

- interconnect electricity, heat, and gas infrastructures

Research, education, innovation:

- roadmap
- demonstrator projects
- research campaigns and programs
- education and training of experts

H2 RESEARCH IN JÜLICH

Forschungszentrum

Goal: Identification of the most cost-

Identification of the most cost-effective strategy to reduce CO₂ in order to achieve Germany's climate goals by 2050

Selected, essential results:

- The transformation is technically and economically feasible
- Reduction strategies differ considerably depending on the target (80/95) for 2050
- Rapid expansion of renewables necessary
- Sector coupling by Power-to-X processes, increase of H₂ significance
- Massive import of H₂ and synfuels necessary

IMPORTING HYDROGEN

FZ Jülich: Study of transformation strategies 2050

Institut für Energie- und Klimaforschung: Techno-ökonomische Systemanalyse https://www.fz-juelich.de/iek/iek-3

Infrastructure-compatible hydrogen logistics

Liquid Organic Hydrogen Carrier (LOHC) systems

Erlangen-Nürnberg part of Forschungszentrum Jülich

- Reversible binding of H_2 to a liquid carrier compound by catalytic hydrogenation / dehydrogenation
- Fuel-like nature enables use of fuel infrastructure ٠
- Release of pure hydrogen enables local and • global zero emission technologies

Example: HI ERN (a part of Forschungszentrum Jülich) runs currently a project to demonstrate an emission-free commuter train based on LOHC-bound hydrogen (on-board release) by 2023 - Sponsor: Bavarian Ministery of economy, 28.7 M€

PHOTO-ELECTROCHEMICAL WATER SPLITTING

Dr. Bugra Turan (former IEK-5)

Scalable solar water splitting device with integrated coplanar water splitting electrodes. Solar to hydrogen efficiency ~4%.

B. Turan, J. P. Becker, F. Urbain et al., *Nat. Commun.* **7**, 12682 (2016).

GLOBAL: H₂**POWER-AFRICA**

Atlas of green hydrogen generation potentials in Africa: A technological,

Funded by BMBF, 2020-2022 Main partners:

- Forschungszentrum Jülich
- WASCALSASSCAL

KOPERNIKUS-PROJECT

Coordination by FZ Jülich, RWTH Aachen, Dechema

Ñ \mathfrak{m} SIEMENS innogy Socio-Energy Transportation Economy WZB Wuppertal Institut Academia Fraunhofer 🕜 atalysis 💈 🜌 Fraunhofer ТΠ Coordination (¢) LMU Group sunfire 🖸 DECHEMA 🕖 JÜLICH 🗛 U WWF GETEC heat & power RWTHAACHEN UNIVERSITY And hydrogenious C DECHEMA GETEC green energy **ZSW** Greenerity **AREVA H, Gen** HZB Öko-Institut e.V. **OBUND** C·A·C Ø And ERC OUV Moving more. Moving the future. 🖌 DIW BERLIN BASE Heraeus OMV CLIMEWORKS WACKER C EVONIK CLARIANT covestro Chemistry INERAT

Partner

Mitglied der Helmholtz-Gemeinschaft

HELMHOLTZ-CLUSTER FOR H2

Helmholtz-Cluster for sustainable and infrastructure compatible for H₂ economy

FORSCHUNGSZENTRUM JÜLICH

Vielen Dank für Ihre Aufmerksamkeit

Mitglied der Helmholtz-Gemeinschaft