

Enabling a Low-Carbon Economy via Hydrogen and CCS

Svend Tollak Munkejord, SINTEF Energy Research, project coordinator http://www.elegancy.no/

ELEGANCY Conference, Brussels, 2018-11-08

Outline of presentation

- ELEGANCY
 - Aim
 - Approach
 - Some highlights

ERA-NET ACT

- Accelerating CCS Technologies
- H2020
- Ten European countries and USA
- Led by The Research Council of Norway
- First call budget: 41 MEUR

ELEGANCY – context

- The low-carbon economy needs H₂
- The low-carbon economy needs CCS
- PV //// Europa Elektrolyse Reforming Natur-Olje gass **()** SINTEF
- Combining hydrogen with CCS offers an exciting opportunity for synergies and value creation
- ELEGANCY aims at contributing to fast-track the decarbonization of the European energy system

ELEGANCY – project-management team

Svend T. Munkejord SINTEF

Hans L. Skarsvåg SINTEF

Marco Mazzotti ETH Zürich

Catherine Banet University of Oslo

Nilay Shah Imperial College London

Gunhild A. Reigstad SINTEF

An Hilmo SINTEF

ELEGANCY – work packages

Case studies incl. social acceptance, environmental aspects and CCS-H₂ **market considerations:** UK (large-scale decarbonization), Netherlands (Rotterdam decarbonization), Norway (full scale CCS chain and H₂ production), Switzerland (decarbonization of transport sector), Germany (adapting gas infrastructure and processes to H₂) **WP5**

H₂-CCS chain tool and evaluation methodologies for integrated chains: (ICL, SINTEF, PSI, RUB, TNO) WP4

Business case development: (UiO,FirstClimate,SDL)

H_2 supply chain including H_2/CO_2 separation WP1

• H₂ from natural gas (ETH, PSI)

- H₂² from other sources (ECN)
- Characterization of CO₂-CO-H₂ mixtures (RUB)

CO₂ transport, injection and storage WP2

- CO₂-brine model (RUB,ICL)
- CO₂ transport-injection interface (SINTEF)
- Storage-site characterization and selection (ICL)
- Mt. Terri decametre scale experiment (ETH)
- Impact of H₂ in the CO₂ stream on storage (BGS)
- De-risking storage

ELEGANCY project management, network building and dissemination (SINTEF)

WP6

WP3

World-class research infrastructure

Description	Scale	Partner
Adsorption infrastructure (ECCSEL)	Lab-scale	ETH
Cycling adsorbent analyser	Lab-scale	ECN
Single- and multi-column reactive PSA/TSA equipment	Pre-pilot, TRL 5	ECN
Equipment for measurements of density, speed of sound and dielectric permittivity	Lab-scale	RUB
Vertical flow facility	Pilot-scale	SINTEF
Pipe and vessel depressurization (ECCSEL)	Lab-scale	SINTEF
Core-flooding laboratory	Lab-scale	ICL
Batch-reactor for mineral-dissolution kinetics	Lab-scale	ICL
Equipment for measurements of CO ₂ -brine-mineral contact angle, interfacial tension and phase behaviour	Lab-scale	ICL
Hydrothermal laboratory (ECCSEL)	Lab-scale	BGS
Geo-microbiology laboratory (ECCSEL)	Lab-scale	BGS
Rock deformation laboratory (ECCSEL)	Lab-scale	SCCER
Micro-seismic monitoring arrays	Lab-scale	SCCER
Mt. Terri research rock laboratory (EPOS)	Pilot-scale	SCCER

- Open-source framework
 - More widespread use
 - More dynamic
- 'Open' or 'closed' modules
- Stationary-design mode
- Dynamic-operation mode
- Multi-scale models for the chain components

9

H₂-CCS chain tool

Design mode:

- Able to represent "real world" scenarios using past data.
- Capable of designing infrastructure for all key resources, whilst ensuring that CO₂ emissions are constrained as the total cost of the network is minimized.
- The model incorporates geographical input data relating to H₂ demands, geological storage volumes, natural gas infrastructure, to be used in the optimization.

Resource Technology Framework:

H₂ supply chain and H₂-CO₂ separation

 Optimized VPSA cycles developed for SMR syngas (ETH – presented at GHGT-14)

- Coproduction of high purity H₂ and CO₂ within a single VPSA cycle is possible
- Hydrogen purities > 99.97 % can be reached →
 PEM fuel cell purity
- Decreasing the evacuation pressure increases the separation performance
- Best energy consumption falls within range of MDEA energy consumption

CO₂ transport, injection and storage

- Construction and assembly completed for the apparatus to be used in the study of gas solubility in brines at high pressures – initial testing started (ICL – below)
- Combination of seawater EOS (Feistel) with Helmholtz EOS (EOS-CG) in progress (RUB – bottom right)
- First version of coupled well-reservoir (nearwell) model is running – presented at GHGT-14 (SINTEF – far right)

Small gas bubble on the point of dissolution.

Bottom-hole pressure in CO₂ injection well: The inclusion of a near-well model significantly impacts pressure dynamics.

t (h)

Conclusion

- ELEGANCY aims to fast-track Europe's energy system by combining CCS and H₂
 - By overcoming specific scientific, technological and economic/legal barriers
 - By undertaking five national case studies adapted to the conditions in the partner countries.

Acknowledgement

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), BMWi (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco, Equinor and Total, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712.

http://www.elegancy.no/