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Abstract
Mixed integer linear programming (MILP) is the state-of-the-art mathematical framework
for optimization of energy systems. The capability of solving rather large problems that
include time and space discretization is particularly relevant for planning the transition
to a system where non-dispatchable energy sources are key. Here, one of the main chal-
lenges is to realistically describe the technologies and the system boundaries: on the one
hand the linear modeling, and on the other the number of variables that can be handled
by the system call for a trade-off between level of details and computational time. With
this work, we investigate how modeling wind turbines, H2 generation via electrolysis,
and storage in salt cavern affect the system description and findings. We do this by imple-
menting methodological developments to an existing MILP tool, and by testing them in
an exemplary case study, i.e. decarbonization of the Dutch energy system. It is found that
modeling of wind turbines curtailment and of existing turbines are key. The deployment
of H2 generation and storage is driven by the interplay between area availability, system
costs, and desired level of autarky.
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1. Introduction

A high penetration of non dispatchable renewable energy sources (NDRES) comes with
the necessity for energy storage capacity. While batteries show a very high round-trip
efficiency and suitability for intra-day storage, they are not suited for long-term storage,
especially seasonal, due to their energy losses over time. (Gabrielli et al. (2018a)) The
production of hydrogen via power-to-gas (PtG) is a more promising candidate for such
long-term storage. Nevertheless, the large volumes required on a national or even in-
ternational scale require alternatives to conventional gas tanks. Hydrogen storage in salt
caverns is a proven technology (Lord et al. (2014)) that features large point storage capac-
ity, especially in the Netherlands and in Germany. Previous studies focusing on Germany
(Welder et al. (2018)) have already shown the potential of the described system. Un-
derstanding the trade-offs between offshore vs. onshore wind farms, and planning the
replacement of old wind installations is a challenging task that benefits from the adaption
of rigorous MILP frameworks. Therefore, this work aims at grasping the aforementioned
trade-offs by analyzing a hypothetical Dutch energy system consisting of onshore and off-
shore wind turbines, and PtG systems with hydrogen storage in salt caverns. Furthermore,
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the extent of autarky achievable with such a system will be quantified.

2. Methodology

The model discussed in this work builds upon the MILP modeling framework reported by
Gabrielli et al. (2018b). Following, we focus on new developments within this framework.

2.1. Wind turbine modeling

Various approaches to model wind turbines showing different levels of detail can be found
in literature. For instance, Gebraad et al. (2017) did detailed wind power plant modeling
while Weber and Shah (2011) used simplified models in an MILP energy system opti-
mization. In this work, the wind turbine’s power curve P(v) (eq. (1)) is used as described
by Jerez et al. (2015).

P(v) =


0 if v < vin

Pr ·
v3−v3

in
v3

r−v3
in

if vin ≤ v < vr

Pr if vr ≤ v < vout

0 if v≥ vout

(1)

where P is the power output, Pr the rated power output (i.e. the maximum capacity), v the
windspeed, and vin, vr and vout the cut-in, rated and cut-out windspeed respectively.

Implementation into the MILP framework: Using historical wind profiles for the full
analyzed time horizon allows to tackle the non linearity arising from the power curve in a
pre-processing step. The maximum power output Pmax for a wind turbine is calculated for
every hour of the year and passed on to the optimization as a constant vector. Note that
Pmax, being the uncurtailed output for a given windspeed, is different from Pr. The actual
output Pout is then calculated as

Pout,i,t ≤ Pmax,i,t ·Si

0≤ Si for all i ∈ {1, I} and t ∈ {1,T}
(2)

where the integer decision variable S is the number of turbines, I the number of types of
turbines and T the length of the time horizon. The optimization can choose to build new
turbines from a discrete set (offshore: 3.5 MW and 6 MW, onshore: 0.9 MW, 2.5 MW
and 4.5 MW). The treatment of existing turbines is more complicated owing to the limited
amount of information open databases provide.

Treatment of existing turbines: The emphasis on a detailed description of the existing
turbines arises from the importance of the decision under which circumstances old tur-
bines should be replaced. While it is easy to model a certain turbine in detail, the vast
variety of existing turbines calls for a more generalized approach which is described in
this section. A data set consisting of 43 turbines, accounting for about 78 % of Dutch
turbines, was used. The only clear correlation was found between the rated power and
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the total integral of the power curve. Based on this observation and the aforementioned
set of turbines, an algorithm to calculate estimates of cut-in, cut-out and rated windspeed
for arbitrary turbines was developed. The algorithm takes the rated power and the man-
ufacturer of the wind turbine to be analyzed as an input as well as the 43 turbines data
set. Knowing that the maximum hourly windspeeds are usually around 10-20 m/s, the
cut-out usually ranging from 20-25 m/s is of minor importance and hence neglected here.
If the manufacturer of the turbine to be analyzed matches with one from the dataset, the
set is reduced to that manufacturer. If it doesn’t, or the manufacturer is unknown, the full
set is used. The remaining turbines of the data set are compared for their rated power.
Depending on how many matches are found, 3 cases are distinguished.

• Case 1: 1 match for rated power found The algorithm uses the match from the dataset
to simulate the turbine of interest.

• Case 2: >1 match for rated power found A target power curve integral It is determined
as

It =
∑

Nm
i=1
∫ vr,max

0 Pi(vin,vr,v)dv
Nm

(3)

where vr,max is the maximum rated windspeed found in the data set and Nm is the to-
tal number of rated power matches found. The cut-in and rated windspeed are then
calculated solving eq. (4)

min
vin,vr

g =

∣∣∣∣∫ vr,max

0
P(vin,vr,v)dv− It

∣∣∣∣
s.t. vin,min ≤ vin ≤ vin,max

vr,min ≤ vr ≤ vr,max

(4)

The cut-out windspeed is returned as the average of the values in the considered data
subset.

• Case 3: No turbines found In this particular case, the turbines with the next higher
and next lower rated power are chosen. If more than one turbine each is found, their
integrals are averaged as seen in eq. (3) to end up with one upper and one lower value.
It is then obtained by simple interpolation. If Pr of the turbine of interest is higher or
lower than all turbines in the considered subset, the whole subset forms the basis for
a linear fit that allows to calculate It by means of extrapolation. Once It is obtained,
the remaining procedure is identical to Case 2, i.e. solving eq. (4) for vin and vr and
averaging vout .

Curtailment: While the inequality in eq. (2) already allows for curtailment, this for-
mulation is imprecise from a physical point of view since wind turbines are curtailed in
a discrete manner. They are either curtailed, i.e. turned off, or operated following their
power curves. To account for this effect, the curtailment C was introduced as an additional



4 L. Weimann et al.

integer decision variable, describing how many turbines are turned off. The power output
can then be formulated as

Pout,i,t = Pmax,i,t · (Si−Ci,t)

0≤Ci,t ≤ Si

0≤ Si

0.252
π ·∑

i
Si ≤ Amax

(5)

Note the strict equality in eq. (5), as compared to eq. (2), is reducing the flexibility of
the system. This formulation allows for a physical-based description of curtailment, but it
also increases significantly the complexity of the problem as discussed in the results. The
total number of turbines is constraint by the maximum available land Amax. It is assumed
that the distance between two wind turbines has to be at least 500 m, giving each turbine
a radius of 0.25 km.

2.2. Power-to-gas

The power-to-gas system consists of a polymer electrolyte membrane (PEM) electrolyzer
and fuel cell, operating with water and air, respectively. Their modeling is reported in
detail by Gabrielli et al. (2018b).

2.3. Hydrogen storage

Hydrogen is considered to be stored in cylindrical salt caverns as described in Gabrielli
et al. (2018c).

3. Case Study

The system under investigation consists of 3 nodes, hereafter called onshore-node (ONN),
offshore-node (OFFN), and cavern-node (CN). All data refers to the Netherlands and is
hourly resolved. The considered time span is the full year 2017. The technologies and
input data profiles for each node are summarized in Table 1. Full connectivity between the
nodes is assumed for the electricity network while the hydrogen network needs to be built
if required, i.e. investment costs occur. The optimization decides upon selection, sizing,
and scheduling of the technologies as well as the flows between the nodes. While there is
no export of electricity allowed, electricity can be imported at a price of 0.032 euro/kWh
and an emission factor of 0.676 kgCO2 /kWh. A CO2-tax of 20 euro/t was applied, corre-
sponding to the current ETS prices. The available land for ONN was assumed to be 15 %
of the total land (WorldBank (2018),McKenna et al. (2015)). For OFFN, a total available
area of 2900 km2 (Dutch Government (2014)) was assumed. The total levelized costs of
the system were used as objective function.

4. Results

The problem was formulated in MATLAB R2018b using YALMIP (Löfberg (2004)) and
solved with Gurobi v8.1 on an Intel Xeon E5-1620 3.60 GHz machine with 16 GB RAM.
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4.1. Case study

The case study was analyzed with continuous curtailment for computational reasons. Ex-
isting wind turbines were not considered because the major objective in this analysis is
the interaction between PtG and wind turbines and the effect on achievable autarky. Since
imported electricity is the only source of emissions, the maximum achievable autarky
was determined by applying a CO2-tax of 106 euro/kWh giving an autarky of 62.5 %
(defined as the fraction of the produced electricity over the total demand). Following, the
autarky was implemented as a constraint and the sensitivity of the technologies towards
this constraint was investigated (see Table 2). It can be observed that in order to achieve
the upper limit of autarky, oversizing of production technologies and installation of PtG
is necessary. As soon as the constraint on autarky is relaxed, undersizing of production
technologies and compensation with import is the preferred combination. Note that this
result is also sensitive to the import price, the CO2-tax, and the emission factor of im-
ported electricity. The difference in size between PEMEC and PEMFC indicates that the
amplitudes in overproduction are greater than in overdemand. Nevertheless, it does not
necessarily follow that the total production for a year is higher than the demand.

4.2. Computational aspects

The introduction of discrete curtailment increases the computational complexity by dras-
tically increasing the number of integer variables. For the Dutch case study, this resulted
in a non-solvable problem due to lack of memory caused by the increased effort in the
branch-and-bound algorithm.

5. Conclusions

In this work, the implementation of wind turbines with its various aspects into an MILP
framework and in particular the consideration of existing turbines was discussed. A first
analysis of the Dutch case study shows how the level of targeted autarky affects the se-
lection of technologies. An upper limit to autarky is given by the available land and PtG
is required to approach this limit. From a computational point of view, the description
of the wind turbine curtailment strongly affects the problem complexity, physical based

Table 1: Summary of technologies and input profiles for the analyzed nodes. Abbrevia-
tions: WT = wind turbine, PEMEC/FC = polymer electrolyte membrane electrolytic cell
/ fuel cell

Node Existing
Technologies

Additional
Technologies Input Profiles

Onshore various WT WT, PEMFC,
PEMEC

electricity demand,
wind

Offshore various WT WT wind

Cavern - PEMFC, PEMEC,
salt cavern storage -
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Table 2: Sensitivity of technology implementation towards level of autarky. The sizes
for electrolyzer (PEMEC) and fuel cell (PEMFC) are in kW capacity, and for the wind-
turbines (WT) in built units. The number next to WT refers to its maximum capacity in
MW

Autarky PEMEC PEMFC WT-0.9 WT-2.5 WT-4.5 WT-3.5 WT-6.0

0.625 42586 423.8 0 26944 4792 1077 24
0.475 0 0 0 15223 0 0 0
0.325 0 0 0 7520 0 0 0
0.175 0 0 0 3687 0 0 0
0.025 0 0 0 531 0 0 0

0 0 0 0 0 0 0 0

modeling of wind turbines might result in too many integer variables.
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