

TECHNICAL REPORT
SUBJECT/TASK (title)

ELCBAS/SEA Programmers Guide SINTEF Energy Research

Address: NO-7465 Trondheim,
 NORWAY
Reception: Sem Sælands vei 11
Telephone: +47 73 59 72 00
Telefax: +47 73 59 72 50

www.energy.sintef.no

Enterprise No.:
NO 939 350 675 MVA

CONTRIBUTOR(S)

Tormod Lund, Nils Eggen, Birger Stene

CLIENTS(S)

Joint project: ABB Kraft AS, Siemens AS,
Sintef Energy Research AS, Statnett SF
 TR NO. DATE CLIENT’S REF. PROJECT NO.

TR A5833 2003-12-22 12X246
ELECTRONIC FILE CODE RESPONSIBLE (NAME, SIGN.) CLASSIFICATION

030620bs12583 Ove Grande Unrestricted
ISBN N0. REPORT TYPE RESEARCH DIRECTOR (NAME, SIGN) COPIES PAGES

82-594-2506-8 Petter Støa 10 77
DIVISION LOCATION LOCAL FAX

Energy Systems Sem Sælandsv. 11 +47 73 59 72 50
RESULT (summary)

This document describes programming data sources and data sinks for the Elcbas/SEA system using the
Simplified Elcom API (SEAPI).

Please see SINTEF’s homepage at: http://www.sintef.no/ELCOM-90. From here you can download the
latest version of all relevant documents as pdf-files for free.

Copyright:
Reproduction of this document is prohibited without permission from one of the three owners: ABB,
Siemens or SINTEF Energy Research.

KEYWORDS

SELECTED BY
AUTHOR(S)

Data communication Communication protocols

Control Centres ELCOM-90

http://www.sintef.no/ELCOM-90�

Elcbas/SEA Page 2 (77)
Programmers Guide Revision Page

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Document Identity:

TR A5833 Revision: 05

Technical Reference:

Approved by:

Attested by:

Date

Revision Synopsis

2003-06-10 01 New Document
2003-09-24 02 Added/reviewed reference information for functions.
2003-12-22 03 First Official Release
2004-03-02 04 Updated after comments
2011-01-10 05 Updated for Elcbas V6.5

Elcbas/SEA Page 3 (77)
Programmers Guide Table of Contents

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Table of Contents

1. INTRODUCTION .. 7

2. USING THE SEAPI .. 9
2.1 General Program Flow ... 9
2.2 Data Identification .. 10
2.3 Programming a Data Source Application .. 10

2.3.1 Unsolicited Data Transfer.. 11
2.3.2 Periodic Data Transfer ... 12
2.3.3 Requested Data Transfer ... 12

2.4 Programming a Data Sink Application .. 13
2.5 Programming a Command Source Application 14
2.6 Programming a Command Sink Application ... 14
2.7 Programming the Management Interface ... 15
2.8 Compiling, Linking and Running your Application 15

2.8.1 Windows Platform ... 15
2.8.2 Unix/Linux Platforms .. 15

3. REFERENCE .. 16
3.1 Functions .. 16

SEAAddInput .. 17
SEAAddToTime .. 19
SEAAlibTimeToSEATime .. 20
SEAClose .. 21
SEAComminfoGet ... 22
SEAConnect .. 23
SEAElcTimeToSEATime .. 24
SEAFree .. 25
SEAGetPartner .. 26
SEAGetRequest ... 27
SEAGetResult .. 29
SEAGetSequence ... 30
SEAGetTime ... 31
SEALogMessage ... 32
SEAManageInfoGet .. 33
SEAManageInfoNew ... 34
SEAManageInfoSet ... 35
SEANextPeriod ... 36
SEAObjlistAdd .. 37
SEAObjlistAddEx ... 39
SEAObjlistGet ... 41
SEAObjlistGetEx ... 43
SEAObjlistGetHeader.. 45
SEAObjlistGetValue ... 46
SEAObjlistNew ... 48
SEAObjlistNewEx ... 50
SEAObjlistNext ... 52
SEAObjlistNextEx ... 53
SEAObjlistReset .. 54
SEAObjlistSetHeader .. 55

Elcbas/SEA Page 4 (77)
Programmers Guide Table of Contents

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistSetValue .. 56
SEAOpen ... 58
SEARemoveInput .. 61
SEASendRequest ... 62
SEASendRequestTo .. 63
SEASendResponse .. 64
SEASetLogLevel ... 66
SEASetLogTarget .. 67
SEASetResult .. 68
SEASystemTimeToSEATime ... 69
SEATimeToAlibTime ... 70
SEATimeToElcTime ... 71
SEATimeToSystemTime ... 72
SEATimeToTimeVal ... 73
SEATimeToTm ... 74
SEATimeValToSEATime ... 75
SEATmToSEATime .. 76

3.2 Structures ... 77
3.3 Constants .. 77
3.4 Macros .. 77

Elcbas/SEA Page 5 (77)
Programmers Guide Table of Figures

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Table of Figures

Figure 1 Sample Elcbas System ... 8

Elcbas/SEA Page 6 (77)
Programmers Guide Preface

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Preface

Purpose
The purpose of this document is to describe programming data sources and data
sinks for the Elcbas/SEA system using the Simplified Elcom API (SEAPI).

Intended Audience
This is a technical document. Some familiarity with Elcom concepts and with the
C programming language is assumed

Structure of the Document
The first part of this document is a brief tutorial description of programming the
SEAPI, whereas the last part contains reference information.

Associated Documents
1. TR A5835 – Elcbas/SEA for Windows Administrators Guide

2. TR A5834 – Elcbas/SEA Configuration Guide

3. TR A3825 – Elcom User Element Conventions

Consult [3] for a more extensive list of Elcom documentation.

Acronyms
SEA Simplified Elcom API

API Application Programming Interface

SEAIN The initiator in the Elcbas/SEA system

SEARS The responder in the Elcbas/SEA system

Trademarks
None

Elcbas/SEA Page 7 (77)
Programmers Guide Introduction

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

1. Introduction
The Elcbas Simplified Elcom API, SEAPI, allows an application to send and
receive Elcom data, as well as commands and setpoints. The handling of the
Elcom protocol details is done by the Elcbas runtime system, and the interface to
the application is through lists of name/value pairs. For a particular installation,
there may be one or more SEAPI applications, or clients. The routing of data is
determined by the configuration of the Elcbas runtime system.

The figure below shows an example system with a single SEAPI client
application, Client1. It also illustrates the different types of data flow supported by
the API.

An SEAPI client can fulfill one or more of the following roles:

• Data Source – maintains data which the responder (sears) sends to one or
more Elcom partners

• Data Sink – receives data from the initiator, which has received these data
from one or more Elcom partners

• Command Source – sends commands or setpoints to one or more remote
partners through the initiator

• Command Sink – receives commands or setpoints from one or more
Elcom partners through the responder

• Management Application – controls the operation of the Elcom runtime
system through the API. For this version, the management functionality is
considered internal, and is not intended for use by third party client
applications.

Elcbas/SEA Page 8 (77)
Programmers Guide Introduction

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Client1

SEAPI

e90

seain

SEAPI

alib

sears

SEAPI

alib

Commands
CommandsData

Data

Figure 1 Sample Elcbas System
The SEAPI library is designed as an API for the C programming language, and
should also be fully usable from C++. For the Windows platform a Visual Basic
Wrapper (for VB6) is available upon request.

Elcbas/SEA Page 9 (77)
Programmers Guide Using the SEAPI

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

2. Using the SEAPI

2.1 General Program Flow
The SEAPI is generally designed as a request-response style API, in which the
server applications sends requests to the client applications, which may or may not
need to provide a response. Responses, when needed, must be provided in a
timely fashion. Within this model, the API should allow considerable flexibility in
usage. A typical, simple, client may look like, in a simplified form:

This illustrates:

1. An application must always call SEAOpen prior to any other API call. The
first parameter is the client application name, of which the first 8

//
// Sample showing flow only
//

#include <stdio.h>
#include <stdlib.h>
#include <seapub.h>

static void die (char *msg)
{
 fprintf (stderr, "%s\n", msg);
 exit (2);
}

int main (int argc, char **argv)
{
 SEAStatus status;
 SEAHandle data = SEA_NULL_HANDLE;

 if ((status = SEAOpen ("client1", SEA_FN_AUTO, 0)) != SEA_OK)
 die ("Failed to open the API");

 for (;;) {
 SEARequest rqId;

 rqId = SEAGetRequest (SEA_RQ_ALL, SEA_INFINITE, &data);

 switch (rqId) {
 case SEA_RQ_DATA:
 fprintf (stderr, "Data received\n");
 break;

 case SEA_RQ_SHUTDOWN:
 die ("API returned SHUTDOWN");
 break;

 default:
 fprintf (stderr, "Unexpected request code %x\n", rqId);
 break;
 }
 }

}

Elcbas/SEA Page 10 (77)
Programmers Guide Using the SEAPI

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

characters are significant, and must be unique in a running system (ie. only
one instance of an application may be active at any time).

2. The application receives data or requests for data through the
SEAGetRequest call. The second parameter is a timeout in seconds, which
may be 0 for use in a polling mode, or the constant SEA_INFINITE shown
here, which means ‘wait until something is available’.

3. The API maintains memory internally using handles. Functions that may
cause the allocation or deallocation of memory require that the address of
the handle is passed, other functions use just the handle value. If calling a
function like SEAGetRequest, the previous contents of the handle will be
automatically released by the API. This may also be done using the
SEAFree function. The handle must initially have the value
SEA_NULL_HANDLE.

4. In case of certain errors, the SEAGetRequest function will return
SEA_RQ_SHUTDOWN. The caller must then either exit, or may attempt
to call SEAClose and then SEAOpen again.

5. Since the routing of data is set up in the configuration files for the initiator
and responder, the client application should always be prepared to deal
with unsupported request codes in a graceful fashion (ie. not crash).

2.2 Data Identification
Objects are identified in the API using names as configured with the Elcbas
Configuration tool. Earlier, names have been restricted to a maximum length of 40
characters (the constant SEA_NAMELEN). With the new Ex functions, this
restriction is removed, and names can, in principle, be of any length. Names may
consist of any printable character.

Note that, whereas the old SEAObject struct contains the name as an embedded
character array, so that a copy of the structure also copies the name, the new
SEAObjectEx structure only contains a pointer to the name, so that this must be
copied separately, if needed.

Objects have a data type corresponding to the Elcom type, with the following
main types:

• 32-bit (single precision) floating point, and corresponding setpoints

• 16-bit signed integer, and corresponding setpoints

• 2-bit status (on, off, between)

• commands (on, off)

2.3 Programming a Data Source Application
A data source application is responsible for delivering data to the responder upon
request so that the responder can deliver these data to its Elcom partners.

Elcbas/SEA Page 11 (77)
Programmers Guide Using the SEAPI

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

There are three different modes of operation for a data source application:

• Unsolicited or event-driven data

• Periodic polled data

• Requested data

2.3.1 Unsolicited Data Transfer
When delivering unsolicited data, an application needs to service subscription
requests from the responder, in the form of request codes:

• SEA_RQ_START_UNSOLICITED – start unsolicited data transfer for the
supplied list of objects. The application should fill inn the current value
and quality for each of the objects and return the list with a response code
of SEA_RS_UNSOLICITED_STARTED.

• SEA_RQ_STOP_UNSOLICITED – stop unsolicited data transfer for the
supplied list of objects. No response is required.

If the API was opened in V1 mode (a function code of SEA_FN_UNSOLICITED
was supplied), the api will generate a SEA_RQ_STOP_UNSOLICITED, with a
list id of SEA_ID_ALL in the header and an empty list, whenever the responder
stops.

If using SEA_FN_RSCLIENT in SEAOpen, this will not happen, use the option
flag SEA_OP_MONITOR instead, and handle SEA_RQ_PARTNER_DOWN
messages if you need to handle this case.

Once subscription is established, data is sent by:

• Creating an object list and adding names and values to it. Up to 255
objects may be added to one list.

• Send the list to the responder with the request code
SEA_RS_UNSOLICITED.

o For V1 compatibility, using SEASendResponse with such a list
will cause the list to be sent to the responder.

o It is recommended that you use the SEASendRequestTo for new
code, to make the function clearer. The constant SEA_SRV_RS
defines the responder api name for use with this function.

Note that updates may be sent from any client/thread, not just the one handling
START_UNSOLICITED. To enable this, consider the following:

• For V1 clients, this is done by using a blank function mask in SEAOpen
for the client sending the changes.

• For newer clients, this is done by using the same object directory for the
clients. Ensure that the client handling start/stop is the one configured for
unsolicited data for the partner in question (or system wide).

Elcbas/SEA Page 12 (77)
Programmers Guide Using the SEAPI

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

2.3.2 Periodic Data Transfer
For periodic data transfer the responder will poll the configured client at the
configured interval, using a request code of SEA_RQ_PERIODIC_DATA. The
application should fill the supplied list with data, and return it with a response
code of SEA_RS_DATA.

To enable caching of data access, the application may read the header to get some
hints:

• The field identifier is a generated number which will guarantee (within
reason) that the list of objects is the same and in the same order.

• The dataType indicates the data type of all objects (which will be the
same).

• The source will equal to SEA_FU_PERIODIC.

• The period will be the configured period, in seconds (this is for
information, it is the responder which will run the timer).

As there is currently no ‘stop’ request available for periodic, an application
caching access info should have some form of ‘garbage collection’ on this,
throwing away lists that have not been seen for some time (the period setting can
be used for this, but more than one period should be used, as the period does not
include any processing delays).

2.3.3 Requested Data Transfer
For requested data transfer the responder will send a request for each request
received from the partner. In this case the application should always read the
object list header, considering the following fields:

• timeSpec – if this is NULL, this is a request for ‘latest data’, otherwise it
points to a SEATimeSpec structure detailing the data wanted. This has the
fields:

o T0 – the time of the first data set (incarnation)

o dt – the interval between data sets

o dtUnit – the time unit for dt (enum SEATimeUnit)

o periods – the number of data sets

o curPeriod – the current period

• source – may be one of SEA_FU_SCHEDULED for plan values or
SEA_FU_ARCHIVED for archived/current values. The exact
interpretation of this is up to the client application.

• dataType – is the type for the objects in the list

• identifier – will be different for each invocation

Elcbas/SEA Page 13 (77)
Programmers Guide Using the SEAPI

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

The application must respond to this request by filling in values and sending the
list back with the response code SEA_RS_DATA.

If a time series is required, this must be repeated the number of times given in
periods. The same list must be used for all responses. The following techniques
may be helpful:

• All values in the list must be time stamped according to the requested time
series. The api has the function SEAAddToTime which may be used to
calculate the time for the next data set.

• The current period in the header must be increased prior to each response
(it is initially 0). This may be done using the api call SEANextPeriod.

• If you prefer to navigate the object list using SEAObjlistNext, the current
pointer of the list may be reset using SEAObjlistReset.

The application may reject a requested data transfer by setting a result code using
SEASetResult and responding to the request with
SEA_RQ_ERROR_RESPONSE. This should be done only once pr. request.

The following result codes are allowed:

• SEA_RES_NO_DATA – The requested list of objects or time
specification matched no data in the application. Note that if some data
may be returned, they should, with the remaining incarnations returned as
default values with bad quality.

• SEA_RES_ILLEGAL_INTERVAL – The specified sample interval is not
available in the application.

2.4 Programming a Data Sink Application
A data sink application receives data from the initiator as it receives it from
remote partners. All data are received with the request code SEA_RQ_DATA, and
simple clients may just process each item in the list individually. To enable
caching of database access, sophisticated clients may read the header to get hints
as follows:

• identifier – if this is 0, the object list should be considered transient. Also,
the objects in the list may be of different types, so the dataType should be
read for each object (dataType in the header will also be 0). If the
identifier is not 0, it signifies a particular set of data, which should not
change as long as the identifier is the same.

• dataType – if not 0 indicates the type of the objects in the list and that
these are all the same.

• source – if not 0, this is one of SEA_FU_PERIODIC,
SEA_FU_SCHEDULED or SEA_FU_ARCHIVED according to the
transfer method and suffix used.

Elcbas/SEA Page 14 (77)
Programmers Guide Using the SEAPI

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

• timeSpec – if not NULL will contain the time information for the current
data incarnation (see above for a description of the timeSpec fields).

For periodic and requested data transfer, each SEA_RQ_DATA contains exactly
one set of data (one incarnation).

There is no ‘stop’ available to indicate when a specific set of data is no longer
relevant, so if some caching is used, the application should garbage collect the
cache as needed.

2.5 Programming a Command Source Application
A command source application sends commands and setpoints to remote
applications via the initiator.

A single command or multiple setpoints may be sent in one request. If multiple
setpoints are sent, these must be defined at consecutive indices in a setpoint group,
and supplied in the object list in group order.

• The application should create an object list, fill in the relevant
command/setpoint data, and send to the initiator with a request code of
SEA_RQ_SETPOINT or SEA_RQ_COMMAND.

• Note that the objects must have data types of SEA_DT_COMMAND,
SEA_DT_SPT_FLOAT or SEA_DT_SPT_INT, rather than the data types
used for receiving data.

• The application should wait for a response from the remote side, which
will come as an object list with a response code of
SEA_RQ_COMMAND_RESPONSE or
SEA_RQ_SETPOINT_RESPONSE.

• The result of the operation will be in the quality code of the object(s) in the
returned list.

• Note that the initiator will return with quality SEA_Q_ILLOBJ if the
supplied object(s) are not configured properly as commands/setpoints of
the correct type, or if multiple setpoints are given which are not
consecutive in a group. This code may also be returned from the remote
side, if this is an Elcbas/SEA system.

Note that the command response only indicates that this is a plausible command
or setpoint in the remote system, any data changes resulting from this must be
configured as normal data objects in order to be received.

2.6 Programming a Command Sink Application
A command sink application receives commands and setpoints from Elcom
partners via the responder.

Elcbas/SEA Page 15 (77)
Programmers Guide Using the SEAPI

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

The application will receive a single command or one or more setpoints of the
same type with the request code SEA_RQ_COMMAND and
SEA_RQ_SETPOINT respectively.

The application should inspect the command/setpoint data, and respond by
updating the quality code(s) and returning the list with a response code of either
SEA_RS_COMMAND_RESPONSE or SEA_RS_SETPOINT_RESPONSE.

The result should indicate whether the command/setpoint(s) are acceptable in the
application or not. Any resulting changes must be updated separately as data
(assuming that the remote partner has configured this).

Special quality codes are defined for command responses, see the reference
section.

2.7 Programming the Management Interface
The Management Interface is currently considered proprietary. It may be
documented in a future version.

2.8 Compiling, Linking and Running your Application

2.8.1 Windows Platform
For the windows platform, follow these steps:

• Add the directory <install>\include to your compiler include file search
path, where <install> is wherever the Elcbas/SEA software was installed
(typically C:\Program Files\Elcbas).

• Add the file seapi.lib to your linker inputs, and add the directory
<install>\lib to the linkers search path.

• Add the directory <install>\bin to the executable search path for the
runtime environment of your target application. You should avoid copying
the seapi.dll to your own directory, as this may create incompatibilities
with future upgrades (a new dll will be compatible, but the protocol
between applications may change, as this is hidden by the dll).

If your compiler is incompatible with the Microsoft Visual C++ name mangling
for stdcall routines, you may need to access the functions by name, using
LoadLibrary and GetProcAddress or similar techniques. A list of function names
and ordinal numbers is available upon request.

2.8.2 Unix/Linux Platforms
Please consult the release notes supplied with your kit.

Elcbas/SEA Page 16 (77)
Programmers Guide Reference

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

3. Reference

3.1 Functions

Elcbas/SEA Page 17 (77)
Programmers Guide SEAAddInput

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAAddInput

Add user-supplied event sources to the wait mechanism in SEAGetRequest

Synopsis
SEAStatus SEAAddInput (SEAInput input);

Arguments
input

This is the input source descriptor (see below for platform specific
descriptions).

Return Values
SEA_OK

Normal, successful return.

SEA_ILLINP
The input source is invalid, or the maximum number of inputs is reached.

Description
This function may be used to add event sources such as file descriptors to the
event handling in SEAGetRequest. Typically this function is used to synchronize
with the source of data changes when supporting unsolicited data transfer

• For Unix systems this is file descriptors e.g. for ipc channels, that are
usable in a select (2) call.

• For Win32 supports any object that may be waited on in
WaitForMultipleObjects.

Example
Win32:
HANDLE event;

event = CreateEvent(NULL, FALSE, FALSE, “DATA_CHANGED”);
if (SEAAddInput (event) != SEA_OK) {
 fprintf (stderr, “Unable to add input\n”);
}

Unix:
int fd;
fd = open (“/tmp/pipe”, O_RDWR, 0);
if (SEAAddInput (fd) != SEA_OK) {

Elcbas/SEA Page 18 (77)
Programmers Guide SEAAddInput

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

 fprintf (stderr, “Unable to add input\n”);
}

Notes
None

Elcbas/SEA Page 19 (77)
Programmers Guide SEAAddToTime

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAAddToTime

Add an interval to a time in SEAPI format.

Synopsis
SEAStatus SEAAddToTime (SEATime *time,

 int dt,
 SEATimeUnit unit);

Arguments
time

[in, out] The time to add to.

dt
[in] The interval to add.

unit
[in] The unit of the interval, members of the enumerator SEATimeUnit.

Return Values
SEA_OK

The operation completed successfully.

SEA_BADPARAM
The time pointer is invalid or the unit is outside the enumerator range.

Description
This function will add an interval to the supplied time. If the unit is
SEA_TU_MONTH or SEA_TU_YEAR, the calculation will only affect the
month and/or year fields. In other cases, the interval will be added as actual
elapsed time.

Example
See the sample t_rs_data.

Notes
This function is new in SEAPI version 3.

Elcbas/SEA Page 20 (77)
Programmers Guide SEAAlibTimeToSEATime

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAAlibTimeToSEATime

Convert time from Elcom alib format (integer array) to SEAPI format.

Synopsis
SEASTatus SEAAlibTimeToSEATime (int altime[7],

 SEATime *seatime);

Arguments
altime

[in] The time in Elcom alib format, ie. an integer array, with year as year –
1900.

seatime
[out] The same time in SEAPI format.

Return Values
SEA_OK

The operation completed successfully.

SEA_BADPARAM
The seatime pointer is invalid.

Description
This function will convert a time in the format used by the Elcom-90 API (alib) to
the format used by the SEAPI. This is a straight copy of data from the integer
array, with the exception of the year field, which is based from 1900 in the Elcom
format.

Example
None available.

Notes
This function is new in SEAPI version 3.

Elcbas/SEA Page 21 (77)
Programmers Guide SEAClose

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAClose

Terminate the SEAPI and free associated resources. After this function is called
no other API functions should be used,

Synopsis
void SEAClose ();

Arguments
None.

Return Values
None.

Description
The SEAClose function is used to properly terminate an applications association
with the API. It will result in all communication handled by this application to
stop, and all api internal resources to be deallocated.

The application may call SEAOpen again to reestablish communication with the
api.

Example
SEAClose (); /* sic! */

Notes
The function may always safely be called. It is harmless even if SEAOpen wasn’t
called earlier.

Elcbas/SEA Page 22 (77)
Programmers Guide SEAComminfoGet

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAComminfoGet

Get connection state information

Synopsis
SEAStatus SEAComminfoGet (SEAHandle reqInfo,
 SEAComminfo **infoptr);

Arguments
reqInfo

The handle we used in the SEAGetRequest call.

infoptr
The connection information may be read from the structure pointed to by this
pointer. Note: This memory is maintained by the API, and will be invalidated
after the next use of the related handle.

Return Values
SEA_OK

Normal, successful return.

SEA_ILLHANDLE
The handle did not refer to a connection info event.

Description
The SEAComminfoGet is used to read out the information after a
SEA_RQ_COMMS_EVENT request .

Example
SEAComminfo *ciptr;
if (SEAComminfoGet (handle, &ciptr) != SEA_OK) {
 fprintf (stderr,

 “Failed to read connection information\n”);
}

Notes
This function is deprecated and should not be used.

Elcbas/SEA Page 23 (77)
Programmers Guide SEAConnect

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAConnect

Connect explicitly to an api partner.

Synopsis
SEAStatus sts = SEAConnect (const char *name, int activate);

Arguments
name

The SEAPI name of the api partner to connect to.

activate
Reserved.

Return Values
SEA_OK

Successfully connected to the given api partner.

SEA_SRVDOWN
API Partner was not active.

Description
After connect is called, the given partner is entered into the internal partner list of
the api, which will result in SEA_RQ_PARTNER_UP or
SEA_RQ_PARTNER_DOWN requests being generated (regardless of whether
the partner was active at connect or not).

Example
None.

Notes
• SEAConnect is intended for used by specialized api clients using the

SEA_FN_MANUAL mask to SEAOpen.

• This function is new in SEAPI version 2.

Elcbas/SEA Page 24 (77)
Programmers Guide SEAElcTimeToSEATime

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAElcTimeToSEATime

Convert an Elcbas-style string time to SEAPI time format.

Synopsis
SEAStatus SEAElcTimeToSEATime (char *elctime,

 SEATime *seatime);

Arguments
elctime

The time in Elcbas-style string format. This should be 17 characters long, in
the format YYYYMMDDHHMMSSmmm (year, month, day, hour, minute,
second, milliseconds, e.g. 20030901120000000 For 12 noon on the 1.
September 2003.

seatime
The same time in SEAPI struct SEATime format.

Return Values
SEA_OK

The operation completed successfully.

SEA_BADPARAM
The seatime pointer is invalid, the elctime pointer is invalid, or the length of
the elctime string is less than 17 characters.

Description
This function will convert a string in Elcbas style time format to the SEAPI
format. Note that minimal checking is done on the format of this string except for
its length.

Example
None.

Notes
• This function was new in SEAPI version 2.

Elcbas/SEA Page 25 (77)
Programmers Guide SEAFree

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAFree

Release data structures.

Synopsis
SEAStatus SEAFree (SEAHandle *data);

Arguments
data

A pointer to the handle for the data structure to deallocate. Upon successful
deallocation this is set to SEA_NULL_HANDLE.

Return Values
SEA_OK

Normal, successful return

SEA_ILLHANDLE
The handle did not refer to a valid data structure

Description
This function may be used to deallocate a handle-based data structure for the API.
Note that handles may be reused without deallocating (e.g. in the SEAGetRequest
call, as the API will check the current value of the handle, and deallocate any
unnecessary memory for each call.

Example
if (SEAFree (list) != SEA_OK)
 fprintf (stderr, “Error during deallocation\n”);

Notes
None

Elcbas/SEA Page 26 (77)
Programmers Guide SEAGetPartner

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAGetPartner

Get the API name of the program that sent the current message.

Synopsis
SEAStatus SEAGetPartner (SEAHandle reqinfo,

 char **partner_name);

Arguments
reqinfo

The handle to the message, as returned by SEAGetRequest

partner_name
Pointer to a char * that will be set to point to the SEAPI partner name. On
return, the pointer will point to data within the API, which should not be
modified. If the data is needed beyond the scope of the provided handle, the
application should make a copy.

Return Value
SEA_OK

Normal, successful return.

SEA_ILLHANDLE
The handle did not refer to a valid, inbound message.

Description
This function will retrieve the API name of the application that originated the
message referred to by the handle to the current application. The function may be
useful e.g. in conjunction with the SEA_OP_MONITOR option. to find out
whether the initiator or responder was started or stopped.

Example
None

Notes
• This function was new in SEAPI version 2.

Elcbas/SEA Page 27 (77)
Programmers Guide SEAGetRequest

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAGetRequest

Get the next request from the API.

Synopsis
SEARequest SEAGetRequest (SEARequest reqMask,

 int timeOut, SEAHandle *info);

Arguments
reqMask

Intended to provide filtering of requests, but currently ignored. Supply
SEA_RQ_ALL for consistent behavior if a future version implements filtering.

timeOut
The time-out (in seconds) to wait for a new request. A value of 0 will cause a
poll without waiting; SEA_INFINITE (-1) will wait indefinitely.

info
A handle to request-specific data. These data may not be accessed directly, but
e.g. through one of the Objlist functions. If the same handle is used in multiple
calls, the API will manage the memory associated with the handle, so that the
current data will be unavailable to the application after the next call. Note that
the handle must be initialized with SEA_NULL_HANDLE prior to first use.

Return Values
The function returns the request/response code provided by the sender in the
SEASendResponse/SEASendRequest/SEASendRequestTo call.

For a full list of request/response codes, see (tbs)

The following codes are generated by this function, and will not return any
message in the handle:

SEA_RQ_TIMEOUT
No request was available within the specified timeout, or no message was
available if polling (timeout 0).

SEA_RQ_SHUTDOWN
An internal error occurred which prevents further use of the API. The
application may attempt to recover by calling SEAClose and SEAOpen again,
or may need to restart.

Description
This function receives a message through the API and returns the request code,
with the info handle pointer being updated to refer to the actual message.

Elcbas/SEA Page 28 (77)
Programmers Guide SEAGetRequest

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Example
SEAHandle info = SEA_NULL_HANDLE;
SEARequest rqid;

rqid = SEAGetRequest (SEA_RQ_ALL, SEA_INFINITE, &info);

switch (rqid)
 .
 .

Notes
• If polling (using a time-out of 0), the application must ensure that the

function is called at least every few seconds, to avoid time-outs at the
protocol level.

• As indicated under SEAOpen, this function is private to a thread under
Win32; it will only return the events from the SEAOpen called for this
thread.

• The requests are described in detail below. The following table describes
the relationship between functions and options to SEAOpen and returned
requests (tbd: table to be updated)

SEA_FN_REQUESTED SEA_RQ_REQUESTED

SEA_FN_PERIODIC SEA_RQ_PERIODIC

SEA_FN_UNSOLICITED SEA_RQ_START_UNSOLICITED or
SEA_RQ_STOP_UNSOLICITED

SEA_FN_COMMAND SEA_RQ_COMMAND or
SEA_RQ_SETPOINT

SEA_OP_CONFIG SEA_RQ_CHECK_CONFIG

SEA_OP_COMMS SEA_RQ_COMMS_EVENT

(always in case of error or stop of
API)

SEA_RQ_SHUTDOWN

(depending on timeOut
parameter)

SEA_RQ_TIMEOUT

(after call(s) to SEAAddInput) SEA_RQ_USER_EVENT

Elcbas/SEA Page 29 (77)
Programmers Guide SEAGetResult

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAGetResult

Read the application-specified result code from an object list header.

Synopsis
SEAStatus SEAGetResult (SEAHandle info, SEAResult *res);

Arguments
info

The handle to the object list the result is stored in.

res
A pointer to a variable which will receive the result code.

Return Values
SEA_OK

Normal, successful return.

SEA_ILLHANDLE
The handle does not refer to an object list.

Description
This function is currently used only by the servers, and retrieves the result code
stored with an object list.

Example
None

Notes
• This function was new in SEAPI version 3.

Elcbas/SEA Page 30 (77)
Programmers Guide SEAGetSequence

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAGetSequence

Get the message sequence number.

Synopsis
SEAStatus SEAGetSequence (SEAHandle info, unsigned int *seq);

Arguments
info

The message for which the sequence number is wanted

seq
A pointer to a variable which will return the sequence number

Return Values
SEA_OK

Normal, successful return.

SEA_ILLHANDLE
The handle did not refer to a valid message.

Description
This function will return the message sequence number, which is set by
SEASendRequest/SEASendRequestTo. This number may be used to correlate
responses received with responses sent, by reading the number from the handle
after it has been sent, and then reading the number of inbound responses.

Example
None.

Notes
• This function was new in SEAPI version 3.

Elcbas/SEA Page 31 (77)
Programmers Guide SEAGetTime

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAGetTime

Get the current time (UTC) in SEAPI time format.

Synopsis
SEAStatus SEAGetTime (SEATime *timebuf);

Arguments
timebuf

Pointer to a SEATime struct (allocated by caller) which will receive the current
time as UTC.

Return Values
SEA_OK

Normal, successful return.

SEA_BADPARAM
The timebuf pointer is invalid.

Description
This function will get the current system time, including milliseconds, in UTC and
return it in the SEAPI time format.

Example
None

Notes
• This function was new in SEAPI version 2.

Elcbas/SEA Page 32 (77)
Programmers Guide SEALogMessage

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEALogMessage

Send application-specific text to the API log handler.

Synopsis
void SEALogMessage (int level, const char *fmt, ...);

Arguments
level

The log level to log this message at. This can be set using the SEASetLogLevel
function, with the deafult level being SEA_LOG_INFO. One of:

SEA_LOG_DBG_1 Debug/Trace level (less verbose)

SEA_LOG_DBG_2 Debug/Trace level (more verbose)

SEA_LOG_DBG_3 Debug/Trace level (most verbose)

SEA_LOG_DATA Used to log data being transferred

SEA_LOG_INFO Informational level (during normal runtime)

SEA_LOG_WARNING Warning level

SEA_LOG_ERROR Error level

SEA_LOG_FATAL Fatal error level

Fmt
A printf style format string, with arguments.

Return Values
None

Description
This currently prints a formatted message, with time information, on the standard
error device (stderr).

Example
...
/* We got an error from a call to an external application */
SEALogMessage (SEA_LEV_ERROR, “Error from system %d”,
errorCode);
...

Notes

Elcbas/SEA Page 33 (77)
Programmers Guide SEAManageInfoGet

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAManageInfoGet

Return a manage info structure from the current message.

Synopsis
SEAStatus SEAManageInfoGet (SEAHandle info,

 SEAManageInfo **mip);

Arguments
info

The handle for the incoming message.

mip
A pointer to a SEAManageInfo pointer which will point to the manage info
data in the message.

Return Values
SEA_OK

Normal, successful return

SEA_BADPARAM
The mip pointer is invalid

SEA_ILLHANDLE
The info handle does not refer to a valid manage info message

Description
This function is used to retrieve message data for messages with request code
SEA_RQ_MANAGE or response code SEA_RS_MANAGE_RESPONSE.

The pointer returned points to data inside the API, which will be valid through the
scope of the handle. If the data should be modified, a copy of the struct must be
taken, and the handle updated with SEAManageInfoSet.

Example
None

Notes
• This function was new in SEAPI Version 3.

• The management interface is used between the Configuration tool and the
servers, and is not intended for general use in this version.

Elcbas/SEA Page 34 (77)
Programmers Guide SEAManageInfoNew

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAManageInfoNew

Allocate a message buffer for manage info use.

Synopsis
SEAStatus SEAManageInfoNew (SEAHandle *info,

 SEAManageInfo *mip);

Arguments
info

A pointer to a handle which will be updated to refer to the new message. Any
data previously associated with the handle will be released.

mip
A pointer to the SEAManageInfo structure to be used to initialize the message.
May be NULL; the information may be set later with SEAManageInfoSet.

Return Values
SEA_OK

Normal, successful return

SEA_ILLHANDLE
The info handle is invalid

SEA_NOMEM
No more handles or no memory available to complete the operation

Description
This function is used to allocate a message for use in the SEAPI management
interface. Optionally, the message is initialized with data from the
SEAManageInfo struct.

Example
None

Notes
• This function was new in SEAPI Version 3.

• The management interface is used between the Configuration tool and the
servers, and is not intended for general use in this version.

Elcbas/SEA Page 35 (77)
Programmers Guide SEAManageInfoSet

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAManageInfoSet

Update a manage info message buffer with new data.

Synopsis
SEAStatus SEAManageInfoSet (SEAHandle info,

 SEAManageInfo *mip);

Arguments
info

The handle for the message.

mip
A pointer to the SEAManageInfo structure to be used to initialize the message.

Return Values
SEA_OK

Normal, successful return

SEA_ILLHANDLE
The handle does not refer to a valid manage info message

SEA_BADPARAM
The mip pointer is invalid

Description
This function is used to update the data in a manage info message. It is typically
used when creating a response to a SEA_RQ_MANAGE request.

Example
None.

Notes
• This function was new in SEAPI Version 3.

• The management interface is used between the Configuration tool and the
servers, and is not intended for general use in this version.

Elcbas/SEA Page 36 (77)
Programmers Guide SEANextPeriod

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEANextPeriod

Increase the period counter in an object list.

Synopsis
SEAStatus SEANextPeriod (SEAHandle list);

Arguments
list

The handle to the object list.

Return Values
SEA_OK

Normal, successful return

SEA_ILLHANDLE
The handle does not refer to a valid object list

SEA_NOTIME
The object list does not contain a time specification

SEA_ENDPER
The number of periods specified is reached

Description
This is a convenience function that can be used in a responder API client to
increase the period counter when responding to requests for time series data.

Example
See the t_rs_data sample source code.

Notes
• This function was new in SEAPI Version 3.

Elcbas/SEA Page 37 (77)
Programmers Guide SEAObjlistAdd

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistAdd

Add an object to an object list

Synopsis
SEAStatus SEAObjlistAdd (SEAHandle list, SEAObject *object,

 SEAValue *value);

Arguments
list

The handle to the object list.

object
The pointer to the object struct defining the object to add.

value
The pointer to the value for the object to add (may be NULL).

Return Values
SEA_OK

Normal, successful return

SEA_NOMEM
No memory available for operation

SEA_LISTFULL
The list is full (max 255 objects)

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function may be used to add objects to an already existing object list.

Example
SEAHandle list = SEA_NULL_HANDLE;
SEAObject object;
SEAValue value;

if (SEAObjlistNew (&list, 0) != SEA_OK)
 fprintf (stderr, “Failed to create object list\n”);
if (SEAObjlistAdd (list, &object, &value) != SEA_OK)
 fprintf (stderr, “Failed to add objects to list\n”);

Elcbas/SEA Page 38 (77)
Programmers Guide SEAObjlistAdd

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Notes
• The data for object and value (if supplied) is copied, so the application

may reuse/deallocate these after the call.

Elcbas/SEA Page 39 (77)
Programmers Guide SEAObjlistAddEx

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistAddEx

Add an object to an object list

Synopsis
SEAStatus SEAObjlistAddEx (SEAHandle list,

SEAObjectEx *object,
 SEAValue *value);

Arguments
list

The handle to the object list.

object
The pointer to the extended object struct defining the object to add.

value
The pointer to the value for the object to add (may be NULL).

Return Values
SEA_OK

Normal, successful return

SEA_NOMEM
No memory available for operation

SEA_LISTFULL
The list is full (max 255 objects)

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function may be used to add objects to an already existing object list.

Example
SEAHandle list = SEA_NULL_HANDLE;
SEAObjectEx object;
SEAValue value;

if (SEAObjlistNew (&list, 0) != SEA_OK)
 fprintf (stderr, “Failed to create object list\n”);
if (SEAObjlistAdd (list, &object, &value) != SEA_OK)
 fprintf (stderr, “Failed to add objects to list\n”);

Elcbas/SEA Page 40 (77)
Programmers Guide SEAObjlistAddEx

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Notes
• The data for object and value (if supplied) is copied, so the application

may reuse/deallocate these after the call.

Elcbas/SEA Page 41 (77)
Programmers Guide SEAObjlistGet

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistGet

Get the specified object from an object list. Also sets the current position of the
list.

Synopsis
SEAStatus SEAObjlistGet (SEAHandle list, int position,

 SEAObject **objptr);

Arguments
list

The object list we are reading.

position
The position (starting with 1) in the list we want read. The constants
SEA_POS_CURRENT (return the current position) and SEA_POS_LAST
(return the last position) are also defined.

objptr
The object structure pointer which will receive the object data. The returned
pointer points to API data structures, and should be considered read-only. It
will be value as long as the handle is in scope.

Return Values
SEA_OK

Normal, successful return

SEA_ILLPOS
The supplied position does not exist in the list

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function is similar to SEAObjlistNext, except it reads from the supplied
position, also setting the current position of the list to this.

Example
SEAStatus status = SEA_OK;
SEAObject *optr;
int i;

status = SEAObjlistGet (list, 1, &optr);
for (i = 2; status == SEA_OK; i++)

Elcbas/SEA Page 42 (77)
Programmers Guide SEAObjlistGet

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

{
 printf (“Name %s\n”, optr->name);
 status = SEAObjlistGet (list, i, &optr);
}

Notes
None

Elcbas/SEA Page 43 (77)
Programmers Guide SEAObjlistGetEx

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistGetEx

Get the specified object from an object list. Also sets the current position of the
list.

Synopsis
SEAStatus SEAObjlistGetEx (SEAHandle list, int position,

 SEAObjectEx **objptr);

Arguments
list

The object list we are reading.

position
The position (starting with 1) in the list we want read. The constants
SEA_POS_CURRENT (return the current position) and SEA_POS_LAST
(return the last position) are also defined.

objptr
The object structure pointer which will receive the object data. The returned
pointer points to API data structures, and should be considered read-only. It
will be value as long as the handle is in scope.

Return Values
SEA_OK

Normal, successful return

SEA_ILLPOS
The supplied position does not exist in the list

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function is similar to SEAObjlistNext, except it reads from the supplied
position, also setting the current position of the list to this.

Example
SEAStatus status = SEA_OK;
SEAObjectEx *optr;
int i;

status = SEAObjlistGet (list, 1, &optr);
for (i = 2; status == SEA_OK; i++)

Elcbas/SEA Page 44 (77)
Programmers Guide SEAObjlistGetEx

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

{
 printf (“Name %s\n”, optr->name);
 status = SEAObjlistGet (list, i, &optr);
}

Notes
None

Elcbas/SEA Page 45 (77)
Programmers Guide SEAObjlistGetHeader

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistGetHeader

Return the header for the object list

Synopsis
SEAStatus SEAObjlistGetHeader (SEAHandle list,

 SEAObjlistHeader **headptr);

Arguments
list

The object list we want to read the header for.

headptr
The address of a SEAObjlistHeader pointer. This will return a pointer into API
data structures, and should not be used to update data. It will be valid as long as
the handle is in scope.

Return Value
SEA_OK

Normal, successful return

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function is used to read the header of an objlist. The header contains
information relating to the use of the objlist, such as transfer parameters.

Example
SEAObjlistHeader myHdr;
if (SEAObjlistGetHeader (list, &myHdr) != SEA_OK)
{
 fprintf (stderr, “Failed to read the list header\n”);
}

Notes
• The pointer will be set to point to a structure that is internal to the API.

This should be considered read-only, and is only valid as long as the
objlist in question exists.

Elcbas/SEA Page 46 (77)
Programmers Guide SEAObjlistGetValue

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistGetValue

Read the value for an object in an object list.

Synopsis
SEAStatus SEAObjlistGetValue (SEAHandle list, int position,

 SEAValue **valptr);

Arguments
list

The object list we are dealing with.

position
The position in the list, typically SEA_POS_CURRENT.

valptr
The pointer to the value in the list. Note: This is read-only.

Return Values
SEA_OK

Normal, successful return

SEA_ILLPOS
The supplied position does not exist in the list

SEA_NOVAL
The object in the list did not have a value set

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function is used to read the value for an object in an object list, typically
when receiving data, commands or setpoints. It returns a pointer to the value in
the list, which should not be modified by the caller.

Example
SEAStatus status;
SEAObject *optr;
SEAValue *valptr;

if ((SEAObjlistGet (list, 1, &optr) != SEA_OK)
 ||(SEAObjlistGetValue (list, 1, &valptr) != SEA_OK))
{
 fprintf (stderr, “Failed to read object or value\n”);

Elcbas/SEA Page 47 (77)
Programmers Guide SEAObjlistGetValue

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

}

Notes
• This call returns a pointer to the existing value information in an object

list, which is read-only information, valid until the next call to this
function or until the associated handle is reused. To update the value
information, use SEAObjlistSetValue.

Elcbas/SEA Page 48 (77)
Programmers Guide SEAObjlistNew

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistNew

Create a new objlist, optionally populating it with one or more objects.

Synopsis
SEAStatus SEAObjlistNew (SEAHandle *list,

 unsigned int size, ...);

Arguments
list

A handle pointer. This should be for a valid handle. (If a non-empty handle, the
previous contents are lost and memory reclaimed).

size
The initial size of the list. A corresponding set of initializers should be supplied
in the varargs part. These should be pointers to SEAObject and SEAValue
structures, the contents of which will be copied into the list (a NULL pointer
may be supplied for the value struct).

Return Values
SEA_OK

Normal, successful return

SEA_NOMEM
No memory available for operation

SEA_ILLSIZE
The list is greater than supported maximum (255)

Description
This function will allocate an object list, initializing it with objects and values as
required. The most typical use is for returning unsolicited data.

Example
SEAObject object;
SEAValue value;
SEAHandle list = SEA_NULL_HANDLE;

if (SEAObjlistNew (&list, 1, &object, &value) != SEA_OK)
{
 fprintf (stderr, “Failed to create objlist\n”);
}

Elcbas/SEA Page 49 (77)
Programmers Guide SEAObjlistNew

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Notes
• The input structures are copied, so the application may do as it pleases

with those after the call.

Elcbas/SEA Page 50 (77)
Programmers Guide SEAObjlistNewEx

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistNewEx

Create a new objlist, optionally populating it with one or more objects.

Synopsis
SEAStatus SEAObjlistNew (SEAHandle *list,

 unsigned int size, ...);

Arguments
list

A handle pointer. This should be for a valid handle. (If a non-empty handle, the
previous contents are lost and memory reclaimed).

size
The initial size of the list. A corresponding set of initializers should be supplied
in the varargs part. These should be pointers to SEAObjectEx and SEAValue
structures, the contents of which will be copied into the list (a NULL pointer
may be supplied for the value struct).

Return Values
SEA_OK

Normal, successful return

SEA_NOMEM
No memory available for operation

SEA_ILLSIZE
The list is greater than supported maximum (255)

Description
This function will allocate an object list, initializing it with objects and values as
required. The most typical use is for returning unsolicited data.

Example
SEAObjectEx object;
SEAValue value;
SEAHandle list = SEA_NULL_HANDLE;

if (SEAObjlistNew (&list, 1, &object, &value) != SEA_OK)
{
 fprintf (stderr, “Failed to create objlist\n”);
}

Elcbas/SEA Page 51 (77)
Programmers Guide SEAObjlistNewEx

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Notes
• The input structures are copied, so the application may do as it pleases

with those after the call.

Elcbas/SEA Page 52 (77)
Programmers Guide SEAObjlistNext

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistNext

Return the next object in an object list.

Synopsis
SEAStatus SEAObjlistNext (SEAHandle list,

 SEAObject **objptr);

Arguments
list

The object list we are reading

objptr
The object struct pointer for the next object on the list

Return Values
SEA_OK

Normal, successful return

SEA_ENDLIST
No more objects in list

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function will return the next object from an object list. On a list returned
from SEAGetRequest the first call to this function will return the first object in the
list. The SEAObjlistReset function can be used to reset a list to the first object.

Example
SEAStatus status;
SEAObject *optr;

while ((status = SEAObjlistNext (list, &optr)) == SEA_OK)
{
 printf (“Name %s\n”, optr->name);
}

Notes
• The caller should not modify the SEAObject structure returned.

Elcbas/SEA Page 53 (77)
Programmers Guide SEAObjlistNextEx

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistNextEx

Return the next object in an object list.

Synopsis
SEAStatus SEAObjlistNextEx (SEAHandle list,

 SEAObjectEx **objptr);

Arguments
list

The object list we are reading

objptr
The object struct pointer for the next object on the list

Return Values
SEA_OK

Normal, successful return

SEA_ENDLIST
No more objects in list

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function will return the next object from an object list. On a list returned
from SEAGetRequest the first call to this function will return the first object in the
list. The SEAObjlistReset function can be used to reset a list to the first object.

Example
SEAStatus status;
SEAObjectEx *optr;

while ((status = SEAObjlistNextEx (list, &optr)) == SEA_OK)
{
 printf (“Name %s\n”, optr->name);
}

Notes
• The caller should not modify the SEAObject structure returned.

Elcbas/SEA Page 54 (77)
Programmers Guide SEAObjlistReset

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistReset

Reset the current item pointer for an objlist.

Synopsis
SEAStatus SEAObjlistReset (SEAHandle list);

Arguments
list

The handle to the object list.

Return Values
SEA_OK

Normal, successful return

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function is used to reset the internal position of an object list, so that
SEAObjlistNext will start from the first object again. When a list is received from
SEAGetRequest, this call is not needed for the first loop.

Example
See the t_rs_data sample code.

Notes
• This function was new in SEAPI Version 3.

Elcbas/SEA Page 55 (77)
Programmers Guide SEAObjlistSetHeader

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistSetHeader

Update the object list header.

Synopsis
SEAStatus SEAObjlistSetHeader (SEAHandle list,

 SEAObjlistHeader *hdr);

Arguments
list

The object list handle

hdr
A pointer to an SEAObjlistHeader structure which contains the new values for
the header. The size field is not updated by this call, but is maintained
internally to reflect the number of objects in the list.

Return Value
SEA_OK

Normal, successful return

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function cane be used to update the object header for an object list.

Example
None.

Notes
• This function was new in SEAPI Version 3.

Elcbas/SEA Page 56 (77)
Programmers Guide SEAObjlistSetValue

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAObjlistSetValue

Set the value for an object in an object list.

Synopsis
SEAStatus SEAObjlistSetValue (SEAHandle list, int position,

 SEAValue *value);

Arguments
list

The object list containing the object we are setting the value for

position
The position in the list (1 is first). Usually this is the constant
SEA_POS_CURRENT (=0) for the current position.

value
The value to set, supplied in a SEAValue structure.

Return Values
SEA_OK

Normal, successful return

SEA_ILLPOS
The supplied position does not exist in the list

SEA_ILLHANDLE
The handle did not refer to a valid object list

Description
This function is usually used to supply a value for an object when responding to
various data transfer requests.

Example
SEAStatus status;
SEAObject *optr;
SEAValue value;

while ((status = SEAObjlistNext (list, &optr)) == SEA_OK) {
 if (optr->dtype == SEA_DT_FLOAT) {
 value.quality = SEA_Q_OK;
 value.v.fval = 10.0;
 }
 else {

Elcbas/SEA Page 57 (77)
Programmers Guide SEAObjlistSetValue

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

 value.v.fval = 0.0;
 value.quality = SEA_Q_NOTOK;
 }
 if (SEAObjlistSetValue (list, SEA_POS_CURRENT, &value)
 != SEA_OK) {
 fprintf (stderr, “Error setting value\n”);
 }
}

Notes
• The information in the value struct is copied, thus it is the responsibility of

the caller to deallocate the original structure.

Elcbas/SEA Page 58 (77)
Programmers Guide SEAOpen

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEAOpen

The SEAOpen function Initializes the SEAPI. It should be called prior to calling
any other function in the API.

Synopsis
SEAStatus SEAOpen (const char *appName,

 SEAFunction functionMask,
 SEAOption optionMask)

Arguments
appName

The name of this interface application (used for identification purposes). Null-
terminated string. The string is significant to 8 characters, which must be
unique on a system.

functionMask
A bitmask specifying which functions will be supported by the API, formed by
OR-ing together from the following list:

SEA_FN_UNSOLICITED Handle
unsolicited data
transfer

V1/V2 Responder client

SEA_FN_PERIODIC Handle Periodic
data transfer

V1/V2 Responder client

SEA_FN_REQUESTED Handle Requested
data transfer

V1/V2 Responder client

SEA_FN_COMMAND Handle
Commands and
setpoints

V1/V2 Responder client

SEA_FN_AUTO Connect to
initiator (V2).
Both servers (V3)

V2 Initiator client, V3
Initiator/Responder client

SEA_FN_INCLIENT Connect to
initiator

V3 Initiator client

SEA_FN_RSCLIENT Connect to
responder

V3 Responder client

 The V1 responder functions implies creation of ‘built-in’ clients, and can only
be used by one client (for each function) at a time in a system.

Elcbas/SEA Page 59 (77)
Programmers Guide SEAOpen

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

optionMask
A bitmask specifying additional options, formed by OR-ing together from the
following list:

SEA_OP_CONFIG Defined, but not used

SEA_OP_COMMS Defined, but not used.

SEA_OP_EXCEPTION Defined, but not used

SEA_OP_MONITOR Receive notification when associated server(s) starts
and stops. (new in version 3).

Elcbas/SEA Page 60 (77)
Programmers Guide SEAOpen

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Return Values
SEA_OK

Normal, successful return

SEA_INUSE
The specified name is already used by another process, or the specified V1
responder function is already used by another process.

Description
The SEAOpen call must be called prior to calling any other functions in the API.
It will initialize the API, and set up the event handler according to the specified
function mask.

Example

if (SEAOpen (“MYAPP”, SEA_FN_AUTO, 0)!= SEA_OK)
{
 fprintf (stderr, “Failed to initialize SEAPI\n”);
 exit (2);
}

Notes
• For the Win32 platform the SEAPI utilizes thread-local storage, so that

multiple threads within a process may access the API simultaneously, each
thread calling SEAOpen as required. All other API functions must then be
called from the same thread.

• The function is designed to succeed even if the local API processes are not
yet started. The application should wait in or poll SEAGetRequest to get
such data when available.

Elcbas/SEA Page 61 (77)
Programmers Guide SEARemoveInput

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEARemoveInput

Remove user-supplied event sources from SEAGetRequest

Synopsis
SEAStatus SEARemoveInput (SEAInput input);

Arguments
input

The event source to remove. See SEAAddInput.

Return Values
SEA_OK

Normal, successful return

SEA_ILLINP
The input source is invalid (no such input)

Description
This function is used to reverse the effect of SEAAddInput

Example
None

Notes
None

Elcbas/SEA Page 62 (77)
Programmers Guide SEASendRequest

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEASendRequest

Send a request to an implicit server.

Synopsis
SEAStatus SEASendRequest (SEARequest request,

 SEAHandle data);

Arguments
request

The request to be sent to the API.

data
The data (e.g. object list) associated with the request.

Return Values
SEA_OK

Normal, successful return

SEA_SRVDOWN
The server/partner process was not running

Description
The SEASendRequest function sends a message to an implied server. New
applications should use the explicit SEASendRequestTo instead.

For V1 clients, this will send a request to the responder.

For V2 and newer clients, this will send a request to the initiator.

Example
None.

Notes
• The SEASendRequestTo function is the preferred alternative for newer

clients.

Elcbas/SEA Page 63 (77)
Programmers Guide SEASendRequestTo

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEASendRequestTo

Send a request to a specified API partner (server).

Synopsis
SEAStatus SEASendRequestTo (const char *srv,

 SEARequest request,
 SEAHandle data);

Arguments
srv

The API name for the partner/client this message is to be sent to. The header
file defines SEA_SRV_IN for the initiator name and SEA_SRV_RS for the
responder name.

request
The request code to send.

data
The handle to the associated data, e.g. object list.

Return Values
SEA_OK

Normal, successful return

SEA_SRVDOWN
The server/partner process was not running

Description
This function sends a request message to the indicated API partner (server).

Example
See the t_in_cmd sample.

Notes
• This function was new in version 2.

Elcbas/SEA Page 64 (77)
Programmers Guide SEASendResponse

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEASendResponse

Send a response to the message originator

Synopsis
SEAStatus SEASendResponse (SEAResponse response,

 SEAHandle data);

Arguments
response

The response id for this data transfer. Currently this mat be one of the
following (list to be reviewed)

SEA_RS_DATA This is a response to a requested or
periodic data transfer request

SEA_RS_UNSOLICITED_STARTED This is a response to a start unsolicited
request

SEA_RS_UNSOLICITED This is unsolicited data

SEA_RS_COMMAND_RESPONSE This is a response to a command

SEA_RS_SETPOINT_RESPONSE This is a response to a setpoint request

SEA_RS_CONFIG_CHECKED The configuration for an objlist has
been checked

SEA_RS_ERROR_RESPONSE This indicates that the last request was
unacceptable

SEA_RS_DONTCARE This indicates that there is no
particular response to a request

 For a description of the correlation between requests and responses, see the

request descriptions later in this chapter.

data

This is a handle referring to data relevant to the response. Often this will be the
same handle as received by SEAGetRequest

Return Values
SEA_OK

Normal, successful return

SEA_SRVDOWN
The server/partner process was not running

Elcbas/SEA Page 65 (77)
Programmers Guide SEASendResponse

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

Description
This function is used to return data and other responses from the API client
application to the originator of the request message.

Example

SEAHandle objlist = SEA_NULL_HANDLE;
...
for (;;)
 {
 SEAGetRequest (SEA_RQ_REQUESTED, SEA_INFINTE, &objlist);
 /* Retrieve data into list */
 SEASendResponse (SEA_RS_DATA, objlist);
 }

Notes
• For a description of the relationship between requests and responses, see

below.

Elcbas/SEA Page 66 (77)
Programmers Guide SEASetLogLevel

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEASetLogLevel

Sets the library log level.

Synopsis
void SEASetLogLevel (int level);

Arguments
level
The log level to set (see SEALogMessage for a list of levels)..

Return Values
None.

Description
This function is used to set the library log level. When logging a message with
SEALogMessage, only messages with a level equal or higher than the set level
will actually be output.

The default log level is SEA_LOG_INFO.

Example
• None.

Notes

Elcbas/SEA Page 67 (77)
Programmers Guide SEASetLogTarget

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEASetLogTarget

Set the target for the library log.

Synopsis
void SEASetLogTarget (int type, const char* logName);

Arguments
type

The type of logging target, one of the constants

• LOG_FILE – log to file

• LOG_CATEGORY – log using the log4cpp library

logName
The log target, a file if type is LOG_FILE, otherwise a log4cpp category name.

Return Values
None.

Description
This function is used to set the target for the library logging function. The default
is to log to the standard error output.

Note that the use of the log4cpp library is primarily intended for use internally by
the Elcbas servers, as it requires a priori initalization to be useful.

Example
None.

Notes

Elcbas/SEA Page 68 (77)
Programmers Guide SEASetResult

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEASetResult

Update the result code in the object list header.

Synopsis
SEAStatus SEASetResult (SEAHandle list, SEAResult res);

Arguments
list

The object list to set the result code in.

res
The result code to set.

Return Values
SEA_OK

Normal, successful return.

SEA_ILLHANDLE
The handle does not refer to an object list.

Description
This function is used to set a result code in an object list. Currently, the only
supported use of this function is when handling requested data transfer in
responder API clients.

Example
None.

Notes
• This function was new in SEAPI Version 3.

Elcbas/SEA Page 69 (77)
Programmers Guide SEASystemTimeToSEATime

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEASystemTimeToSEATime

Convert a Win32 SYSTEMTIME structure to SEAPI time format.

Synopsis
SEAStatus SEASystemTimeToSEATime (SYSTEMTIME *systemtime,

 SEATime *seatime);

Arguments
systemtime

Pointer to a SYSTEMTIME structure, as defined in the Win32 API.

seatime
Pointer to a SEATime structure which will be updated based on the contents of
the SYSTEMTIME input.

Return Values
SEA_OK

Normal, successful completion.

SEA_BADPARAM
Either of the input pointers are invalid.

Description
This function performs a straight copy of corresponding fields between the two
structures.

Example
None.

Notes
• This function was new in SEAPI Version 2.

• This function is only available on the Windows platform.

• No checks are performed on the validity of the contents of the input
structure.

Elcbas/SEA Page 70 (77)
Programmers Guide SEATimeToAlibTime

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEATimeToAlibTime

Convert time from SEAPI format to Elcom alib format (integer array) .

Synopsis
SEAStatus SEATimeToAlibTime (SEATime *seatime,

 int altime[7]);

Arguments
seatime

[in] The input time in SEAPI format.

altime
[out] The same time in Elcom alib format, ie. an integer array, with year as
year – 1900.

Return Values
SEA_OK

The operation completed successfully.

SEA_BADPARAM
The seatime pointer is invalid.

Description
This function will convert a time in the SEAPI format to the format used by the
Elcom-90 API (alib).

Example
None available.

Notes
• This function is new in SEAPI version 3.

• No validity checks are performed on the input time.

Elcbas/SEA Page 71 (77)
Programmers Guide SEATimeToElcTime

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEATimeToElcTime

Convert time from SEAPI format to Elcbas-style string format.

Synopsis
SEAStatus SEATimeToElcTime (SEATime *seatime, char *elctime);

Arguments
seatime

[in] The input time in SEAPI format.

elctime
[out] The same time in Elcbas-style string format.

Return Values
SEA_OK

The operation completed successfully.

SEA_BADPARAM
One or both pointers are invalid.

Description
This function creates a string in the format YYYYMMDDHHMMSSmmm from
the input format, e.g. 20030915120000000.

Example
None.

Notes
• This function is new in SEAPI version 2.

• No validity checks are performed on the input time.

Elcbas/SEA Page 72 (77)
Programmers Guide SEATimeToSystemTime

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEATimeToSystemTime

Convert time from SEAPI format to Win32 SYSTEMTIME format.

Synopsis
SEAStatus SEATimeToSystemTime (SEATime *seatime,

 SYSTEMTIME *systemtime);

Arguments
seatime

[in] The input time in SEAPI format.

systemtime
[out] The same time in Win32 SYSTEMTIME format.

Return Values
SEA_OK

The operation completed successfully.

SEA_BADPARAM
One or both pointers are invalid.

Description
This function converts a time in SEAPI format to the Win32 SYSTEMTIME
format. The function is a straight copy, except for the weekday field in
SYSTEMTIME (wDayOfWeek), which is computed.

Example
None.

Notes
• This function was new in SEAPI Version 2.

• This function is only available on the Windows platform.

• No checks are performed on the validity of the contents of the input
structure.

Elcbas/SEA Page 73 (77)
Programmers Guide SEATimeToTimeVal

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEATimeToTimeVal

Convert time from SEAPI format to a Unix timeval structure.

Synopsis
SEAStatus SEATimeToTimeVal (SEATime *seatime,

 struct timeval *tv);

Arguments
seatime

[in] The input time in SEAPI format.

tv
[out] The same time in Unix timeval format.

Return Values
SEA_OK

The operation completed successfully.

SEA_BADPARAM
One or both pointers are invalid.

Description
This function converts the input time in SEATime format to a struct timeval,
which contains the elapsed seconds since 1.1.1970 together with the elapsed
microseconds within the second. The input time is assumed to be in UTC.

Example
None.

Notes
• This function was new in SEAPI Version 2.

• This function is only available on the Unix platforms.

• No checks are performed on the validity of the contents of the input
structure.

Elcbas/SEA Page 74 (77)
Programmers Guide SEATimeToTm

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEATimeToTm

Convert time from SEAPI format to a struct tm format.

Synopsis
SEAStatus SEATimeToTm (SEATime *seatime, struct tm *tmp);

Arguments
seatime

[in] The input time in SEAPI format.

tmp
[out] The same time in struct tm format, as defined in ANSI C.

Return Values
SEA_OK

The operation completed successfully.

SEA_BADPARAM
One or both pointers are invalid.

Description
This function converts from the SEAPI time format to a struct tm, as defined in
ANSI C. Only corresponding fields are converted, and milliseconds are ignored.

Example
None.

Notes
• This function was new in SEAPI Version 2.

• No checks are performed on the validity of the contents of the input
structure.

Elcbas/SEA Page 75 (77)
Programmers Guide SEATimeValToSEATime

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEATimeValToSEATime

Convert from Unix timeval structure to SEAPI time format.

Synopsis
SEAStatus SEATimeValToSEATime (struct timeval *tv,

 SEATime *seatime);

Arguments
tv

[in] The time in struct timeval format.

seatime
[out] The same time in SEAPI time format.

Return Values
SEA_OK

The operation completed successfully.

SEA_BADPARAM
One or both pointers are invalid.

Description
This function converts the supplied timeval structure (as UTC) to a corresponding
SEATime structure. The microseconds are truncated to milliseconds.

Example
None.

Notes
• This function was new in SEAPI Version 2.

• This function is only available on the Unix platforms.

• No checks are performed on the validity of the contents of the input
structure.

Elcbas/SEA Page 76 (77)
Programmers Guide SEATmToSEATime

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

SEATmToSEATime

Convert from struct tm format to SEAPI time format.

Synopsis
SEAStatus SEATmToSEATime (struct tm *tmp, SEATime *seatime);

Arguments
tmp

[out] The input time in struct tm format, as defined in ANSI C.

seatime
[in] The same time in SEAPI format.

Return Values
SEA_OK

The operation completed successfully.

SEA_BADPARAM
One or both pointers are invalid.

Description
This function converts the input struct tm time, as defined in ANSI C, to SEAPI
time format. Milliseconds are set to zero.

Example
None.

Notes
• This function was new in SEAPI Version 2.

• No checks are performed on the validity of the contents of the input
structure.

Elcbas/SEA Page 77 (77)
Programmers Guide Reference

TR_A5833 ELCBAS-90 SEA Programmers Guide.doc 01/04/2011 12:37:00
TR A5833 rev. 05

3.2 Structures
Please refer to the header file seapub.h for structures.

3.3 Constants
Please refer to the header file seapub.h for constants.

3.4 Macros
Please refer to the header file seapub.h for macros.

	1. Introduction
	2. Using the SEAPI
	2.1 General Program Flow
	2.2 Data Identification
	2.3 Programming a Data Source Application
	2.3.1 Unsolicited Data Transfer
	2.3.2 Periodic Data Transfer
	2.3.3 Requested Data Transfer

	2.4 Programming a Data Sink Application
	2.5 Programming a Command Source Application
	2.6 Programming a Command Sink Application
	2.7 Programming the Management Interface
	2.8 Compiling, Linking and Running your Application
	2.8.1 Windows Platform
	2.8.2 Unix/Linux Platforms

	3. Reference
	3.1 Functions

	SEAAddInput
	SEAAddToTime
	SEAAlibTimeToSEATime
	SEAClose
	SEAComminfoGet
	SEAConnect
	SEAElcTimeToSEATime
	SEAFree
	SEAGetPartner
	SEAGetRequest
	SEAGetResult
	SEAGetSequence
	SEAGetTime
	SEALogMessage
	SEAManageInfoGet
	SEAManageInfoNew
	SEAManageInfoSet
	SEANextPeriod
	SEAObjlistAdd
	SEAObjlistAddEx
	SEAObjlistGet
	SEAObjlistGetEx
	SEAObjlistGetHeader
	SEAObjlistGetValue
	SEAObjlistNew
	SEAObjlistNewEx
	SEAObjlistNext
	SEAObjlistNextEx
	SEAObjlistReset
	SEAObjlistSetHeader
	SEAObjlistSetValue
	SEAOpen
	SEARemoveInput
	SEASendRequest
	SEASendRequestTo
	SEASendResponse
	SEASetLogLevel
	SEASetLogTarget
	SEASetResult
	SEASystemTimeToSEATime
	SEATimeToAlibTime
	SEATimeToElcTime
	SEATimeToSystemTime
	SEATimeToTimeVal
	SEATimeToTm
	SEATimeValToSEATime
	SEATmToSEATime
	3.2 Structures
	3.3 Constants
	3.4 Macros

