

OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

Amy Robertson January 20, 2017

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Co-Authors

- Fabian F. Wendt National Renewable Energy Laboratory, Colorado, USA
- Jason M. Jonkman National Renewable Energy Laboratory, Colorado, USA
- Wojciech Popko Fraunhofer IWES, Germany
- Habib Dagher University of Maine, USA
- Sebastien Gueydon, MARIN, Netherlands
- Jacob Qvist 4Subsea, Norway
- Felipe Vittori, CENER, Spain
- José Azcona, CENER, Spain
- Emre Uzunoglu, CENTEC, Portugal
- Carlos Guedes Soares, CENTEC, Portugal
- Rob Harries DNV GL, England
- Anders Yde DTU, Denmark
- Christos Galinos, DTU, Denmark
- Koen Hermans, ECN, Netherlands
- Jacobus Bernardus de Vaal, IFE, Norway
- Pauline Bozonnet IFP Energies nouvelles, France
- Ludovic Bouy PRINCIPIA, France
- Ilmas Bayati Politecnico di Milano, Italy
- Roger Bergua Alstom Wind, Spain
- Josean Galvan, Tecnalia, Spain
- Iñigo Mendikoa, Tecnalia, Spain
- Carlos Barrera Sanchez Universidad de Cantabria IH Cantabria, Spain
- Hyunkyoung Shin University of Ulsan, Korea
- Sho Oh, University of Tokyo, Japan
- Climent Molins, Universitat Politècnica de Catalunya, Spain
- Yannick Debruyne, WavEC Offshore Renewables, Portugal

IEA Wind Tasks 23 and 30 (OC3/OC4/OC5)

- Verification and validation of coupled offshore wind modeling tools are need to ensure their accuracy, and give confidence in their usefulness to users.
- Three research projects were initiated under IEA Wind to address this need:

 OC3 = Offshore Code Comparison Collaboration (2005-2009)
 OC4 = Offshore Code Comparison Collaboration, Continuation (2010-2013)
 OC5 = Offshore Code Comparison Collaboration, Continuation, with Correlation (2014-2017)

OC5 Project Phases

- OC3 and OC4 focused on *verifying* tools (tool-to-tool comparisons)
- OC5 focuses on *validating* tools (code-to-data comparisons)

Phase I: Monopile - Tank Testing Phase II: Semi - Tank Testing Phase III: Jacket/Tripod – Open Ocean

NATIONAL RENEWABLE ENERGY LABORATORY

OC5 Phase II

- **Objective**: validate ultimate and fatigue loads in tower/moorings
- Test Data from **DeepCwind** project:
 - Carried out by the DeepCwind consortium, led by the University of Maine
 - MARIN wave basin 2013
 - 1/50th-scale floating semisubmersible
 - MARIN Stock Wind Turbine
 - Same platform as OC4, but different turbine
 - Thank you to: Andrew Goupee and Habib Dagher for allowing us to use the data in the OC5 project

Instrumented OC5-DeepCwind model in the MARIN offshore basin

Test Summary

- Tests:
 - Free-decay
 - Wind-only
 - Wave-only
 - Wind/wave

Recorded data:

- Rotor torque and position
- Tower-top and -base forces an moments
- Mooring line tensions
- 6DOF platform motions
- Accelerations on the nacelle, tower, and platform

Layout of the floating wind system in the tank

Summary of Tools and Modeling Approach

	Code	Aero- dynamics		Hydrodynamics					Moorings				
Participant		Dyn. Wake	Unst. Airfoil	2 nd + WK	1 st PF	2 nd PF	ME	Meas. Wave	Stretch	Inst. Pos.	Dyn.	Hydro Exc.	Seabe d Fric.
4Subsea	OrcaFlex-FAST v8												
CENER FAST v6 + OPASS													
CENTEC	FAST v8												
DNV GL Bladed 4.8													
DTU ME	HAWC2												
DTU PF	HAWC2												
ECN-MARIN aNySIM-PHATAS v10													
IFE	3DFloat												
IFP_PRI	DeepLinesWind V5R2												
NREL PF	FAST v8												
NREL ME	FAST v8												
POLIMI	FAST v8.15			Diff									
Siemens PLM	Samcef Wind Turbine												
Tecnalia F7O	FAST v7 + OrcaFlex 9.7												
Tecnalia F8	FAST v8.16												
UC-IHC	Sesam												
υου	UOU + FAST v8												
UPC	UPC + FAST												
UTokyo	NK-UTWind												
WavEC FAST	FAST v8												
WavEC FF2W	FF2W												

Calibration

- Static Equilibrium position and loads (tower/moorings)
 - Tuning of nacelle CM to achieve near 0 pitch
 - System properties needed adjustment for 0 heave equilibrium
- Mooring Offsets load/displacement curve for moorings
 - Adjustment to mooring line length/stiffness properties
- Free Decay eigen-frequencies and damping
 - Adjustment of C_D and C_A or calculation of damping matrix
 - Additional linear damping matrix
 - Additional stiffness in surge/pitch to match natural frequencies (cable bundle influence?)

DOF	Frequency (Hz)	Period (s)	Damping Coeff. (linear, p) (quadratic, q)
Surge	0.00937	107	0.1095 0.1242
Sway	0.00890	112	0.0795 0.1265
Heave	0.0571	17.5	0.0094 0.2733
Roll	0.0305	32.8	0.0648 0.0625
Pitch	0.0308	32.5	0.0579 0.0686
Yaw	0.0124	80.8	0.1446 0.0165
Tower Bending Fore/Aft (F/A)	0.315	3.18	
Tower Bending Side/Side (S/S)	0.325	3.08	

Calibration – Wind-Only Tests

Check aerodynamic properties

- Tuning done by UMaine, and used by all participants
- Modification of wind model to better match tests (shear, coherence, turbulence)
- Variations in individual blade mass and pitch to create 1P, 2P, and 4P excitation

Tower-top shear force - dynamic wind, mean wind speed of 13.05 m/s

Calibration – Wave-Only Tests

• Regular wave tests used to:

- Tune mooring properties
- Assess heave excitation

• Some models are missing critical elements of heave excitation

- Dynamic pressure on base columns for Morison solutions
- Relative fluid velocity for viscous drag calculation

• Also showed issues related to using a quasi-static mooring model

Validation Tests

Load Case	Description	RPM	Blade Pitch (deg)	Wave Condition	Wind Condition	Sim. Length (min)
3.3	Operational Wave	0	90	Irregular: H _s = 7.1 m, T _p = 12.1 s, γ=2.2, JONSWAP	N/A	176
3.4	Design Wave	0	90	Irregular: <i>H_s</i> = 10.5 m, <i>T_p</i> = 14.3 s, γ=3.0, JONSWAP	N/A	180
3.5	White Noise Wave	0	90	White noise: H_s = 10.5 m, T_{range} =6-26 s	N/A	180
4.1	Oper. Wave Steady Wind 1	12.1	1.2	Irregular: <i>H_s</i> = 7.1 m, <i>T_p</i> = 12.1 s, γ=2.2, JONSWAP	$V_{hub,x}$ = 12.91 , $V_{hub,z}$ = -0.343 σ_x = 0.5456, σ_z = 0.2376	180
4.2	Oper.Wave Steady Wind 2	12.1	15.0	Irregular: H _s = 7.1 m, T _p = 12.1 s, γ=2.2, JONSWAP	$V_{hub,x} = 21.19, V_{hub,z} = -0.600$ $\sigma_x = 0.9630, \sigma_z = 0.4327$	180
4.3	Oper. Wave Dynamic Wind	12.1	1.2	Irregular: H _s = 7.1 m, T _p = 12.1 s, γ=2.2, JONSWAP	NPD spectrum, μ = 13.05	180
4.4	Design Wave Steady Wind 1	12.1	1.2	Irregular: H_s = 10.5 m, T_p = 14.3 s, γ=3.0, JONSWAP	$V_{hub,x}$ = 12.91 , $V_{hub,z}$ = -0.343 σ_x = 0.5456, σ_z = 0.2376	180
4.5	White N. Wave Steady Wind 1	12.1	1.2	White noise: H_s = 10.5 m, T_{range} = 6-26 s	$V_{hub,x}$ = 12.91 , $V_{hub,z}$ = -0.343 σ_x = 0.5456, σ_z = 0.2376	180

Validation – Ultimate and Fatigue Loads

- Validation assessed by comparing ultimate and fatigue loads for the:
 - Tower-top shear force
 - Tower-base shear force
 - Upwind mooring line
- Simulations generally underestimated these loads
 - Error greater for fatigue
 - When wind is included, tower loads are higher, fatigue error greater, ultimate error smaller
 - Error generally larger at tower bottom compared to tower top (only bottom shown here)
 - Not a significant change for different wind/wave conditions

Exceedance Probability Plots

Ultimate/Fatigue Loads – LC 3.3 and 4.1

• Colors:

 \circ Red = PF-only

○ Green = ME-only

◦ Blue = PF+ME

Most PF
 models under predicting loads

 Without wind, most ME-only models overpredicting loads

20

10

30

40

50 50

-40

-30

-20

-10

Ω

WAVEC FF2W 4SUBSEA

-50

-40

-30

-20

-10

0

30

40

20

10

Tower Base PSD – LC 3.3 – Waves Only

- Line Style:
 - o Solid = PF+ME
 - o Dash = ME-only
 - o Dash-Dot = PF-only
- **Distinct peaks:** pitch, waves, tower bending
- Cumulative PSD
 Difference
 - Sum integrated
 PSD difference
 from low to high
 frequencies
 - Shows where
 largest model
 error occurs

15

Tower Base PSD – LC 4.1 – Waves + Wind

Conclusions

- Fairly consistent under-prediction of ultimate/fatigue loads
 - Seeing an average of about 20% under-prediction
 - Not bad, but would like to better understand reasons
 - See this level of error for wave-only, so not just due to wind

• Saw some issues with the test data:

- Wind: large broad-band frequency excitation and 1P/2P/3P/4P excitation
- o Instruments and cabling could be adding influence
- Hysteresis of mooring lines

• Modeling approach influences:

- Nonlinear wave forces (2nd-order PF, 2nd-order wave kin., wave stretching, etc.)
- Axial excitation on heave plates
- Dynamic mooring models
- Not much focus on aerodynamics
- Most ME-only models large tower bending excitation

Uncertainty

- o Difficult to determine if differences caused by modeling error or test uncertainties
- Uncertainty not assessed here, but examined in ISOPE paper by Robertson, 2017

• Future Recommendations:

- Address uncertainty in model tests
- Use CFD to assess modeling errors

Robertson, A. et al. "Uncertainty Analysis of OC5-DeepCwind Floating Semisubmersible Offshore Wind Test Campaign". To be presented at The International Society of Offshore and Polar Engineers Conference, June 2017.

111 6

Thank You!

Amy Robertson +1 (303) 384 – 7157 Amy.Robertson@nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.