On the impact of non-Gaussian wind statistics on wind turbines - an experimental approach

Jannik Schottler, N. Reinke, A. Hölling, J. Peinke, M. Hölling

ForWind, Center for Wind Energy Research University of Oldenburg, Germany

jannik.schottler@forwind.de

Motivation

source: youtube.com

Motivation

source: youtube.com

- wind turbines are subjected to **atmospheric turbulence**!
- potential impact on...
 - ...power output: grid fluctuations
 - ...torque: drive train failure
 - ...loads: lifetime

[Carrasco et al., 2006; Sørensen et al., 2007]

[Musial et al., 2007; Feng et al., 2013]

[Burton et al., 2001]

Research Alliance

Wind Energy

Motivation

source: youtube.com

- wind turbines are subjected to **atmospheric turbulence**!
- potential impact on...
 - ...power output: grid fluctuations
 - ...torque: drive train failure
 - ...loads: lifetime

[Carrasco et al., 2006; Sørensen et al., 2007]

[Musial et al., 2007; Feng et al., 2013]

Research Alliance

Wind Energy

Numerics

- turbulence models
- computational costs

3

• validation?

Describing turbulence

• industry standard for wind field description:

10 min mean values, turbulence intensity

 $TI = \sigma_u / \langle u \rangle$

Describing turbulence

• industry standard for wind field description:

10 min mean values, turbulence intensity

Describing turbulence

• industry standard for wind field description:

10 min mean values, turbulence intensity

$$TI = \sigma_u / \langle u \rangle$$

velocity increment
$$u_{\tau} := u(t + \tau) - u(t)$$

velocity increment
$$u_{ au} := u(t + \tau) - u(t)$$

time series of increments

Research Alliance

Wind Energy

© ForWind

6

IEC 61400-1-ED3, 2005 wind turbines, design requirements

turbulence: Mann model (1998) / Kaimal model (1972)

IEC 61400-1-ED3, 2005 wind turbines, design requirements

turbulence: Mann model (1998) / Kaimal model (1972)

ForWind Center for Wind Energy Research

IEC 61400-1-ED3, 2005 wind turbines, design requirements

turbulence: Mann model (1998) / Kaimal model (1972)

7

offshore wind data

• non-Gaussian, intermittent increments

underestimation of extreme events

[[]Wächter et al. 2012]

7

IEC 61400-1-ED3, 2005 wind turbines, design requirements

turbulence: Mann model (1998) / Kaimal model (1972)

Field data vs model

Time series	$\langle u \rangle [{\rm ms^{-1}}]$	$\sigma_u [\mathrm{ms^{-1}}]$	TI [%]
Kaimal	7.51	0.54	7.21
FINO1	7.50	0.54	7.18

• datasets nearly equal acc. to mean + TI

Field data vs model

Time series	$\langle u \rangle [{ m ms}^{-1}]$	$\sigma_u [\mathrm{ms^{-1}}]$	TI [%]
Kaimal	7.51	0.54	7.21
FINO1	7.50	0.54	7.18

• datasets nearly equal acc. to mean + TI

- strongly different regarding increment PDF
- intermittency not reflected correctly by Kaimal model

Field data vs model

Time series	$\langle u \rangle [{ m ms}^{-1}]$	$\sigma_u [\mathrm{ms^{-1}}]$	TI [%]
Kaimal	7.51	0.54	7.21
FINO1	7.50	0.54	7.18

• datasets nearly equal acc. to mean + TI

- strongly different regarding increment PDF
- intermittency not reflected correctly by Kaimal model

Impact on wind turbines?

[Schottler et al., 2017]

- 16 axes w/ stepper motors
- individually tunable
- defined, turbulent flows
- reproducible:
 - time series
 - statistics

- 16 axes w/ stepper motors
- individually tunable
- defined, turbulent flows
- reproducible:
 - time series
 - statistics

Setup

- model wind turbine
- D=58cm
- active load control
- hot wire measurements upstream of rotor
- TSR = 7
- turbine data:
 - thrust (load cell)
 - torque (generator current)
 - power (electric)

Setup

- model wind turbine
- D=58cm
- active load control
- hot wire measurements upstream of rotor
- TSR = 7
- turbine data:
 - thrust (load cell)
 - torque (generator current)
 - power (electric)

Main idea

Inflow A)

Inflow B)

Does the turbine ,see' the difference?

[Schottler et al. 2017]

[Schottler et al. 2017]

Time series	$\langle u(t) \rangle [{\rm ms^{-1}}]$	$\sigma_u [{ m ms}^{-1}]$	TI [%]
А	6.92	0.39	5.59
В	6.96	0.38	5.50

[Schottler et al. 2017]

 effect of properties beyond mean + TI (intermittency) isolated

67ms

80ms (~rotor diameter)

2s

15

67ms

80ms (~rotor diameter)

2s

Turbine reaction - all quantities

Turbine reaction - all quantities

Intermittent characteristics remain present in turbine data !

One second data, multi MW nearshore turbine

[P. Milan]

© ForWind

Impact on wind turbine

One second data, multi MW nearshore turbine

[P. Milan]

Impact on wind turbine

One second data, multi MW nearshore turbine

[P. Milan]

Thank you for your attention!

Funded by the Reiner Lemoine Stiftung

18

Further information:

Wind Energ. Sci., 2, 1–13, 2017 www.wind-energ-sci.net/2/1/2017/ doi:10.5194/wes-2-1-2017 © Author(s) 2017. CC Attribution 3.0 License.

On the impact of non-Gaussian wind statistics on wind turbines – an experimental approach

Jannik Schottler¹, Nico Reinke¹, Agnieszka Hölling¹, Jonathan Whale², Joachim Peinke¹, and Michael Hölling¹

¹ForWind, University of Oldenburg, Institute of Physics, Küpkersweg 70, 26129 Oldenburg, Germany ²Murdoch University, School of Engineering and Information Technology, Murdoch, WA, 6150, Australia

Correspondence to: Jannik Schottler (jannik.schottler@uni-oldenburg.de)

Load Control

P [W]	cp [%]
w [Hz]	
n [m/s]	
TSR [-]	

Load Control

