Wind Tunnel Wake Measurements of Floating Offshore Wind Turbines

I. Bayati, M. Belloli, L. Bernini, A. Zasso

Politecnico di Milano, Department of Mechanical Engineering
Presentation’s outline

• Motivations and goals

• Ongoing analysis of unsteady aerodynamics of FOWTs @ PoliMi

• Experimental Setup and Tests

• Results

• Conclusions
Motivations and goals

- Support side activity of LIFES50+ project
- Hybrid tests in Wave Basin
- Understanding unsteady aerodynamics due to platform’s motion
 - Calibration of numerical models
 - Imposed Surge motion @ different amplitudes and frequencies
Ongoing analysis of unsteady aerodynamics of FOWTs @ PoliMi

From experiments, unsteadiness depends on:

- **Tip Speed Ratio**
- **“Wake Reduced Velocity”** V_w^*

$$V_w^* = \frac{U}{f \cdot D}$$

- V_w^*
 - N of rotor **diameters** D “travelled” by the air with a **drift (mean) velocity** V within **one cycle** of **platform motion** of **frequency** f

$V_w^* > 5$
Quasi-steady behaviour

$V_w^* < 5$
Non-linear behaviour: the rotor re-enters its wake
Experimental Setup and Tests

Experimental Setup

- Downwind Hot-wire anemometer
- Upwind Pitot Anemometer
- 6 Components balances
- Imposed Surge Motion

Tests

- **2D Map** (Y-Z plane)
 - @ Rated

- **1D Map** (Y, Hub’s height)
 - @ Below Rated
 - @ Rated
 - @ Above Rated
 - Different Amplitudes & frequencies
Steady 2D map @ Rated Wind Speed

- Wind speed $U = 3.67$ m/s
 scale factor (1/3)

- Rotor Diameter $D = 2.38$ m
 scale factor (1/75)

- Expected/measured Thrust ≈ 28 N
 scale factor (1/50594)

- Recomputed Thrust ≈ 28 N
 from wake deficit

$$T = \int_A \rho U (U_\infty - U) dA$$
(Mass conservation + Momentum loss)
No Motion: the effect of C_t on the mean wake velocity

- High $C_t = $ great momentum loss (Below/Low Rated)
- Low $C_t = $ low wake deficit (Above Rated)
No Motion: turbulence in the wake

- Higher turbulence
- Tip vortices

- Lower turbulence
- Clear visibility of the rotational frequency (4 Hz)
Imposed Motion: Wake dynamic component at the frequency of the imposed motion

- Mean wake velocity influences the entity of wind oscillation at surge frequency f
Imposed Motion: Surge frequency in the wake

- **Same operational conditions**

- **Normalization** of the FFT by the maximum peak amplitude

- Clear evidence of the **surge motion frequency** f

- Rotational frequency still evident (where present from no motion)
Imposed Motion: Surge frequency in the wake (Changing V_w^*) @Rated

Towards quasi-steady dynamic conditions (higher V_w^*), Surge frequency more visible in the wake…

![Graphs showing surge frequency in the wake for different V_w^* values](image)

Surge frequency visible in the wake

$V_w^* = \frac{U}{f \cdot D}$

Freq. 0.25 Hz
Amp. 100 mm

Freq. 1 Hz
Amp. 30 mm

...missing Surge frequency in the wake!!
Imposed Motion: Surge frequency in the wake (depending on V_w^*) @ Above rated

This dependency on V_w^* is however affected by the corresponding steady spectral content (Ct)

$$V_w^* = \frac{U}{f \cdot D}$$

Freq. 0.25 Hz
Amp. 100 mm
Surge frequency visible in the wake

Freq. 2 Hz
Amp. 15 mm
Surge frequency still visible in the wake
Conclusions and on-going work

• No motion, steady 2D map @ rated: correspondence between force measurements and wake deficit analysis

• No Motion: visible effect of C_t on the mean wake velocity

• No Motion: visible turbulence in the wake linked to the aerodynamic efficiency (C_t)

• With Motion, different wave reduced velocity V_w^* test cases:
 • Towards quasi-steady dynamic conditions (higher V_w^*), Surge frequency more visible in the wake
 • This dependency on V_w^* is however affected by the corresponding steady spectral content (C_t)

• Overall confirmation of the dual dependency of the unsteadiness on the steady aerodynamic efficiency and the wake reduced velocity V_w^*

• Measurements at different downwind distances
Imposed Motion: Test Matrix, different V_w^* test cases

<table>
<thead>
<tr>
<th>🅿️ Full Scale</th>
<th>🅿️ Wind Tunnel</th>
<th>V_w^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>U (m/s)</td>
<td>Amp x_0 (m)</td>
<td>Period T (s)</td>
</tr>
<tr>
<td>7</td>
<td>7.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2.25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.125</td>
<td>12.5</td>
</tr>
<tr>
<td>11</td>
<td>7.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2.25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.125</td>
<td>12.5</td>
</tr>
<tr>
<td>16</td>
<td>7.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2.25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.125</td>
<td>12.5</td>
</tr>
</tbody>
</table>