Eera Deepwind'2017, 14th Deep Sea Offshore Wind R&D Conference, 18 - 20 January 2017

POLITECNICO MILANO 1863

Wind Tunnel Wake Measurements of Floating Offshore Wind Turbines

I. Bayati, M. Belloli, L. Bernini, A. Zasso

Politecnico di Milano, Department of Mechanical Engineering

- Motivations and goals
- Ongoing analysis of unsteady aerodynamics of FOWTs @ PoliMi
- Experimental Setup and Tests
- Results
- Conclusions

I. Bayati, <u>M. Belloli</u>, L. Bernini, A. Zasso

Motivations and goals

Support side activity of • LIFES50+ project 20Hybrid tests in Wave Basin

- Understanding • unsteady aerodynamics due to platform's motion
- Calibration of numerical models

Imposed Surge motion @ different amplitudes and frequencies

POLITECNICO MILANO 1863

35

30

25

Steady Motion

Ongoing analysis of unsteady aerodynamics of FOWTs @ PoliMi

From experiments, unsteadiness depends on:

- Tip Speed Ratio
- "Wake Reduced Velocity" V_w^*

$$V_w^* = \frac{U}{f \cdot D}$$

- V_w^* N of rotor diameters D "travelled" by the air with a drift (mean) velocity V within one cycle of platform motion of frequency f
- $V_w^* > 5$ Quasi-steady behaviour
- $V_w^* < 5$ Non-linear behaviour: the rotor re-enters its wake

I. Bayati, <u>M. Belloli</u>, L. Bernini, A. Zasso

Experimental Setup and Tests

Experimental Setup

- Downwind Hot-wire anemometer
- Upwind Pitot Anemometer
- 6 Components balances
- Imposed Surge Motion

Tests

- **2D Map** (*Y*-*Z* plane)
 - @ Rated
- **1D Map** (*Y*, Hub's height)
 - @ Below Rated
 - @ Rated
 - @ Above Rated

+

• Different Amplitudes & frequencies

I. Bayati, <u>M. Belloli</u>, L. Bernini, A. Zasso

Steady 2D map @ Rated Wind Speed

z (m)

- Wind speed *U*=3.67 m/s scale factor (1/3)
- Rotor Diameter D =2.38 m scale factor (1/75)
- Expected/measured Thrust ≈ 28 N scale factor (1/50594)
- Recomputed Thrust $\approx 28 \text{ N}$ from wake deficit -10 $T = \int_{A} \rho U (U_{\infty} - U) dA$

I. Bayati, <u>M. Belloli</u>, L. Bernini, A. Zasso

No Motion: the effect of *Ct* on the mean wake velocity

- High *Ct* = great momentum loss (Below/Low Rated)
- Low *Ct* = low wake deficit (Above Rated)

I. Bayati, <u>M. Belloli</u>, L. Bernini, A. Zasso

No Motion: turbulence in the wake

I. Bayati, M. Belloli, L. Bernini, A. Zasso

Imposed Motion: Wake dynamic component at the frequency of the imposed motion

• Mean wake velocity influences the entity of **wind oscillation** at surge frequency *f*

I. Bayati, M. Belloli, L. Bernini, A. Zasso

Imposed Motion: Surge frequency in the wake

- Same operational conditions
- Normalization of the FFT by the maximum peak amplitude
- Clear evidence of the **surge motion** frequency *f*
- Rotational frequency still evident (where present from no motion)

I. Bayati, <u>M. Belloli</u>, L. Bernini, A. Zasso

Imposed Motion: Surge frequency in the wake (Changing V_w^*) @Rated

Towards quasi-steady dynamic conditions (higher V_w^*), Surge frequency more visible in the wake...

I. Bayati, M. Belloli, L. Bernini, A. Zasso

Imposed Motion: Surge frequency in the wake (depending on V_w^*) @Above rated

This dependency on V_w^* is however affected by the corresponding steady spectral content (*Ct*)

I. Bayati, M. Belloli, L. Bernini, A. Zasso

Conclusions and on-going work

- No motion, steady 2D map @ rated: correspondence between force measurements and wake deficit analysis
- No Motion: visible effect of *Ct* on the mean wake velocity
- No Motion: visible turbulence in the wake linked to the aerodynamic efficiency (*Ct*)
- With Motion, different wave reduced velocity V_w^* test cases:
 - Towards quasi-steady dynamic conditions (higher V_w^*), Surge frequency more visible in the wake
 - This dependency on V_w^* is however affected by the corresponding steady spectral content (*Ct*)
- Overall confirmation of the **dual dependency** of the unsteadiness on the **steady aerodynamic efficiency** and the **wake reduced velocity** V_w^*
- Measurements at different downwind distances

Imposed Motion: Test Matrix, different V_w^* test cases

Full Scale			Wind Tunnel			V_W^*
U (m/s)	Amp x_0 (m)	Period T (s)	U (m/s)	Amp x_0 (m)	Frequency f (Hz)	(-)
7	7.5	100	2.3	0.1	0.25	≈ 4
	2.25	25		0.03	1	≈ 1
	1.125	12.5		0.015	2	≈ 0.5
11	7.5	100	3.6	0.1	0.25	≈ 6
	2.25	25		0.03	1	≈ 1.5
	1.125	12.5		0.015	2	≈ 0.8
16	7.5	100	5.3	0.1	0.25	≈ 9
	2.25	25		0.03	1	≈ 2.2
	1.125	12.5		0.015	2	≈ 1

I. Bayati, <u>M. Belloli</u>, L. Bernini, A. Zasso