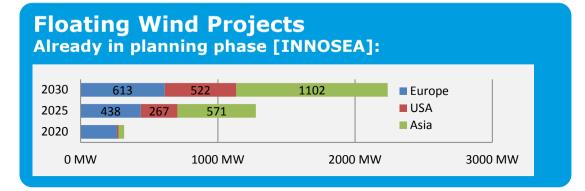
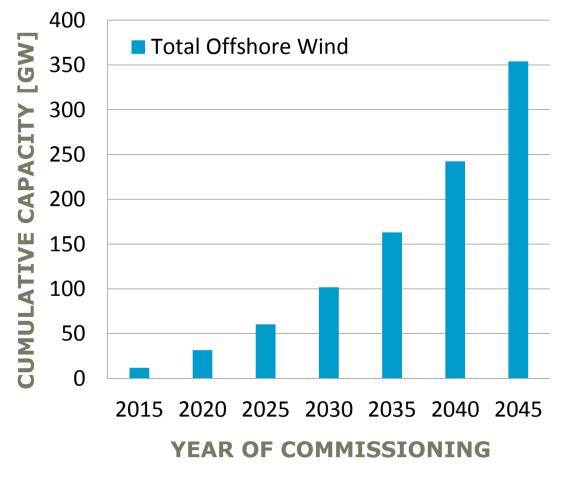
Fabrication and installation constraints for floating wind and implications on current infrastructure and design

Denis Matha, Alexander Mitzlaff Christopher Brons-Illing, Ron Scheffler Ramboll


Qualification of innovative floating substructures for 10MW wind turbines and water depths greater than 50m

The research leading to these results has received funding from the European Union Horizon2020 programme under the agreement H2020-LCE-2014-1-640741.



INTRODUCTION

- Large offshore floating wind farm projects expected by 2025
- EU H2020 LIFES50+ scenario:
 - 10 MW Wind Turbine
 - 500 MW wind farms at 3 sites
- Fabrication and Installation Constraints need to be identified and addressed before large scale deployment

Forecast based on IRENA 2016, "INNOVATION OUTLOOK OFFSHORE WIND"

RAMBOLL

NOTE: All data/results present herein are generic/hypothetical and not related to LIFES50+ concepts from Olav Olsen, Iberdrola, Nautilus and Ideol

qucadoura WindFloat Prototype

July 2011- MPG/Lisnave Workshop, Portugal

RAMBOLL

FABRICATION

Pre-fabrication

• Typically in shipyards

Size restrictions

• Transport (if not in shipyard)

Storage for mass production

STEEL

• Bearing capacity & weather restrictions

• Space required for pre-fabricated parts

Many ports do not provide capability

• Accessibility to Cargo vessels, Rail, Road

• Assembly

- Dry dock or Quayside (water depth)
- Bearing capacity & crane restrictions •
- Weather restrictions for welding

PRINCIPLE

FABRICATION CONCRETE

- Precast
 - Concrete factory
 - No weather dependence
 - Transport to assembly port
- In-situ
 - Local concrete plant or mobile batching plant
 - Weather restrictions apply (drying)
 - Longer production periods
 - Cast in one part
- Bearing capacity of construction site (for assembly crane and/or structure)

Photo by MT Højgaard Cranefree® Gravity foundation

RAMBOLL

NOTE: All data/results present herein are generic/hypothetical and not related to LIFES50+ concepts from Olav Olsen, Iberdrola, Nautilus and Ideol

Photo by IDEOL IDEOL Floatgen

FABRICATION SUMMARY

Steel

Advantages	Challenges
 Established in the offshore wind industry: Know-how existing Proven solutions and standards exist to avoid issues related to corrosion due to saltwater and salty air, wind turbine load, etc. Assembly can be executed relatively fast if components are pre-fabricated (consists of welding operations and positioning of the parts only) Lighter substructures are possible (compared with concrete) 	 Expensive material, price fluctuating, planning difficult Specialized equipment (e.g. large scale welding machines and cranes with sufficient lift capacity) required, shipyard preferable Large dimension components/parts: Need to be built at shipyards/factories, typically not at construction site, which is a challenge for mass production Heavy/large parts need to be transported to construction site, suitable access (road, railways, waterways) required Suitable storage area at port required

RAMBOLL

FABRICATION SUMMARY

Concrete

Advantages

- **Concrete local supply** adaptable to local conditions and project requirements:
 - Ready-mix concrete
 - Mobile batching plant
 - Installation of a stationary batching plant at the construction site
- No specialized equipment, like large scale welding machines, required (construction at lower costs)
- Low costs of concrete as a raw material
- Ready-mix concrete only: less storage area required (no raw material has to be stored for batching at port)

Challenges

- Limited use in offshore wind industry
- (Often) larger dimensions of concrete floaters require large construction area for mass production
- High weight of concrete floaters (restrictions to the bearing capacity and space)
- Concrete cannot bear tension loads, therefore additional procedures (e.g. pretensioning, avoiding of upending actions) necessary
- Wide range of **weather restrictions** for construction/drying process (e.g.no construction during frost or heavy rain)
- Mixing process at the construction site possibly more inaccurate (additional quality assurance necessary)

RAMBOLL

LIFES50+ SITES RELEVANT PORTS

Gulf of Maine Medium Conditions

-	
Port	Distance
Port Clyde	23
Bath	28
Yarmouth	33
Portland	35
Rockland	42
Belfast	58
Bucksport	71
Bar Harbor	79
Gloucester	82
Bangor	85
Salem	90
Boston (DD)	102
Provincetown	104
Plymouth	110
Sandwich	118
Eastport	139
Hyannis Harbor	140
Nantucket Harbor	140
CAN Yarmouth	143
CAN Port Maitland	145
CAN Meteghan	147
CAN Beaver Harbor	150
Oak Bluff	151
CAN Bayside	154
CAN Weymouth	159

RAMBOLL

LIFES50+

7

West of Barra Severe Conditions

Port	Distance
Castlebay	18
Lochboisdale	35
Lochmaddy	62
Mallaig	69
Lochaline	75
Glensanda	87
Kyle of Lochalsh	87
Kishorn	88
Crinan Canal	94
Port Askaig	94
Coleraine	100
Loch Gairloch	100
Arnish	105
Stornoway	106
Corpach	107
IRL Rathmullen	110
IRL Moville	112
Port Ellen	114
IRL Burtonport	117
Londonderry	121
Ullapool	121
Campbeltown	130
Carnlough	132
Larne	141
Cairnryan	152
Girvan	152
IRL Killybegs	152
Kilroot	154
Stranraer	156
Belfast (DD)	159

NOTE: All data/results present herein are generic/hypothetical and not related to LIFES50+ concepts from Olav Olsen, Iberdrola, Nautilus and Ideol

Golf de Fos

Port

Sete

Lavera Port De Bouc

Fos Sur Mer (DD)

Port La Nouvelle

ESP Feliu de Guixols

Marseille (DD)

Port Vendres

ESP Palamos

MCO Monaco

ITA San Remo

ESP Barcelona

ESP Rosas

Cannes

Nizza

Mild Conditions

Distance 20

20

21

29

49

74

80

90

105

111

118 130

137

151

157

STORAGE SPACE AND SIMULTANEOUS INSTALLATION INVESTIGATED PORTS

RAMBOLL

STORAGE SPACE AND SIMULTANEOUS INSTALLATION CHALLENGES

Arnish (Distance: 105 NM)

- Former oil and gas fabrication
- 80t/m² heavy lift
- In redevelopment for fabrication of jacket subcomponents

Challenges for 10MW Floating + Simultaneous Installation

- Quay length 100m (+200m)
- Space 48ha (10ha developed)
- Water depth 6.5m (intended to 8,5-9m depth)
- No large cranes

>> Significant investments in infrastructure is likely required

LIFES50+

RAMBOLL

STORAGE SPACE AND SIMULTANEOUS INSTALLATION CHALLENGES

- Former fabrication of O&G platforms •
- Heavy lift capacities •
- Quays: 3.5m 10m depth 80m & 120m length
- Dry-dock: 8m (LAT), 12m (HAT) 150m gate
- Concrete casting facility on site •

Challenges for 10MW Floating + Simultaneous Installation

- Significant space limitations
- No cranes

>> Significant investments in infrastructure is likely required

RAMBOLL

NOTE: All data/results present herein are generic/hypothetical and not related to LIFES50+ concepts from Olav Olsen, Iberdrola, Nautilus and Ideol

LIFES50+

INSTALLATION SUMMARY

11

SUMMARY Float Out (Tide) Hook up of harbor tug boats; Float out from construction/launching site; Ballasting of substructure (and removing of temporary buoyancy modules, if used); Dis- and reconnecting of towing lines to sea-going tugs; Towing of the floater towards open sea		Installation (Hs 1.5m) Work preparation for installation (including power supply); Anchor Supply Vessel takes over messenger line; Messenger and mooring line pulled in; Mooring handed over to floater; Pre-tensioning of mooring, locked by chain stoppers; Ballasting		Termination (1.5m) Crew transfer and work preparation; Removing armoring, preparation of conductors; Cable connection, test preparation and conduct; Permanent hang off; Clean up and disembarking		
Dep. on distance 8h – 55h Start Substructure and wind turbine at construction/launch site	11h Transit (Hs 2.5m Transit to wind farm; Positioning of floater exact position (dynar positioning); Deployr of teams onto floater	at nic nent	22h Dynamic Cable Installation (1.5m) Positioning of Cable Lay Vessel/or other suitable vessel; Crew transfer and work preparation; Cable inspection and pick up of messenger line; Pull in of cable; Installation of temporary security modules (e.g. hang off clamp) for connection; Tests to confirm the		Return Transit back to coast and port; Unload of equipment	

INSTALLATION ANALYSIS METHOD

SETUP

SITE Setup

- Site Selection
- Port Selection
- Minimum Weather Window

PROJECT Setup

- Vessel Types
- Vessel Numbers
- Vessel Properties
- Project Data

RAMBOLL

- Starting Dates
- Dimensions

CALCULATION

DATABASES

- Vessel Properties
- Weather Data
- Port Properties
- Work Break-Down

CALCULATION

- Required Time
 - Weather Window
 - Installation Time
- Estimated Costs
 - Use of Vessels

RESULTS

REQUIRED TIME

- Site/Port-specific
- One FOWT and whole Farm
- Operational Time and Stand-by Time

ESTIMATED COSTS

- Indicative Results
- Fixed Costs and Variable Costs

INSTALLATION LIMITATIONS OF ANALYSIS METHOD

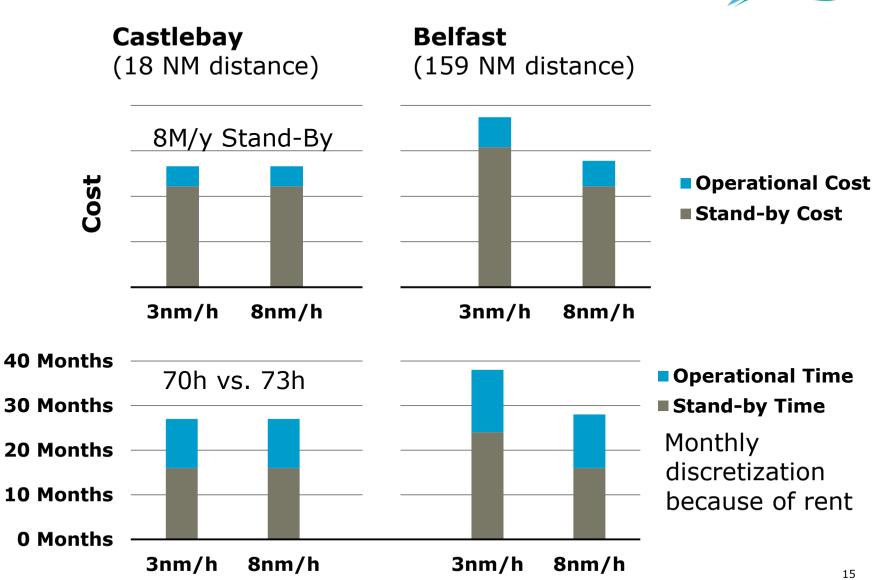
- Limitations
 - Generic installation non-optimized procedure assumed
 > with real substructures differences are expected
 - Weather persistence data was estimated and no accurate persistence data available for all 3 sites
 - Vessel cost fluctuation is high
 > influences the conclusions on key aspects
 - No consideration of availability of vessels
 > only possible in commercial setting with specific timelines
 - Calculation is static and not suited for short term planning
 > here time-domain Installation/O&M planning tools are required

INSTALLATION ASSUMPTIONS

14

Vessel		Bollard Pul		Fix Costs	Variab	le Costs
[Abbreviation]	[Name]		[Figs. By DAMEN]	[average €/d]	[a	verage €/d]
HT	Harbor Tug	BP: 40 t	ij.	7000		1000
AHTS-280BP	Anchor Handling Tug Supply Vessel (A-Type)	BP: 280 t		130000	d costs	20000
AHTS-180BP	Anchor Handling Tug Supply Vessel (C-Type)	BP: 180 t		64000	n in fixed	6000
AHTS-85BP	Anchor Handling Tug/ Offshor Supply Vessel	re BP: 85 t		36000	variation	4000
OT-80BP	Offshore Tug	BP: 80 t		17000	δ	3000
OT-50BP	Offshore Tug	BP: 50 t		8500	ron	1500
CTV	Crew Transfer Vessel	THE		3000	Str	500
(CLV)	Cable Lay Vessel	E CARRIER		55000		5000

INSTALLATION PORT LOCATION

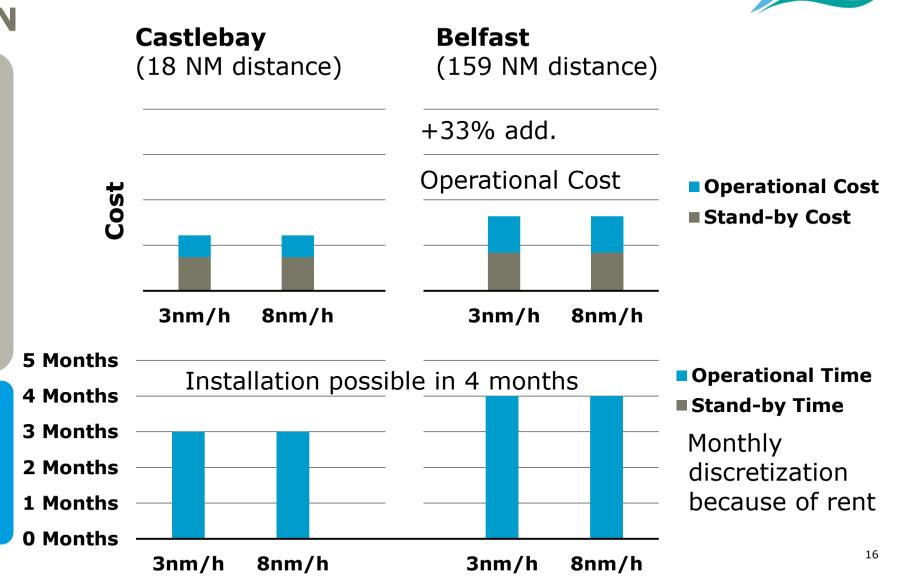

Port Distance & Towing speed

Scenario Site C (West of Barra)

- Option 1: Max. Towing Speed = 3 NM/h
- Option 2: Max. Towing Speed = 8 NM/h
- 1 FOWT installed simultaneously

RAMBOLL

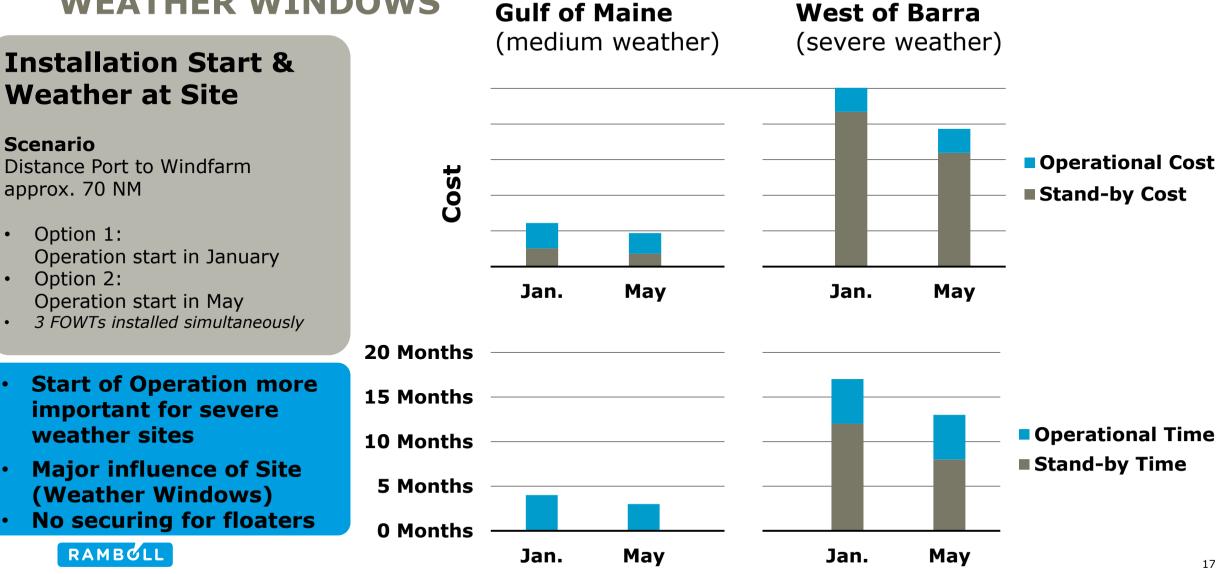
- Towing speed important for small fleets and large distance
- Considerable influence of dist., but more weather dominated


INSTALLATION PORT LOCATION

Port Distance & Towing speed

Scenario Site C (West of Barra)

- Option 1: Max. Towing Speed = 3 NM/h
- Option 2: Max. Towing Speed = 8 NM/h
- 4 FOWT installed simultaneously
- Minor influence of towing speed
- Large influence of distance to port
- 50 Floaters in 4m required!


RAMBOLL

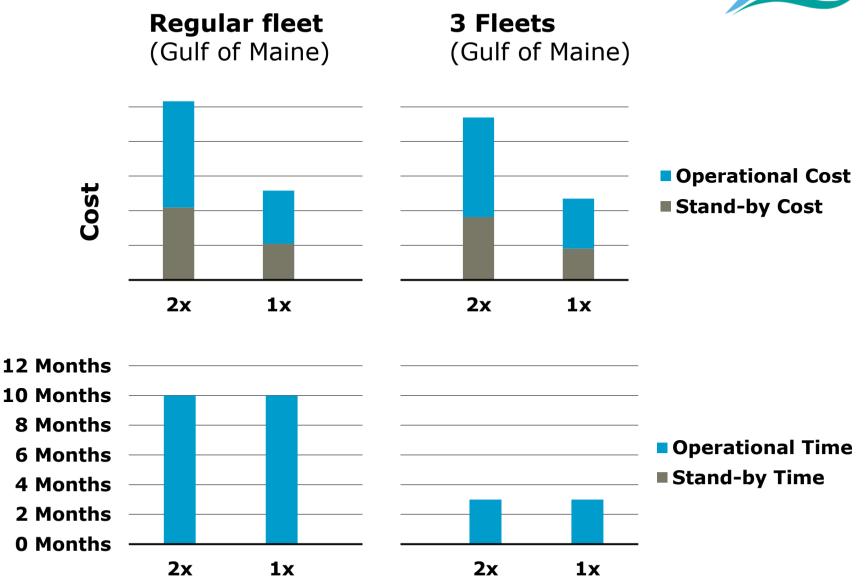
LIFES50+

INSTALLATION WEATHER WINDOWS

Installation Start & Weather at Site

LIFES50+

18


INSTALLATION FLEET SIZE

Fleet Size & Req. Vessels

Scenario Site B (Gulf of Maine) 70 NM distance

- Option 1: Req. number of Vessels x2
- Option 2: Regular Number of Vessels
- Operation starts in May
- Usage of more fleets decreases primarily time
- Vessel requirements have large influence on cost >> Optimization potential for floaters

RAMBOLL

INSTALLATION SUMMARY

- Installation Port
 - Major influence of distance -> Transit times & Cost
 - Towing speed important for small fleets and large distance
 - More fleets massively improve cost and time -> Req. fast supply of floaters
 - Min. requirements for selection: Water Depth, Fabrication, Cranes, Space & Bearing Capacities
- Weather Windows
 - Start of Operation more important for severe weather sites
 - Major influence of Weather Windows if distance to port is high
 - Forecasts more important: Challenging to secure structures in case of bad weather (no jack-up)
- Required Vessels and Fleet Size
 - Usage of more fleets decreases primarily time
 - Vessel requirements have large influence on cost -> Optimization potential for floaters

RAMBOLL

OUTLOOK RECOMMENDATIONS & NEXT STEPS IN LIFES50+

Recommendations for large wind farm projects at specific sites:

- Early involvement of manufacturer & early review of installation port restrictions
- Selection of port is of high importance
- Adapt design to capabilities of manufacturer, port and installation procedure

Next steps Phase 2 of LIFES50+:

- Detailed analysis of fabrication and installation procedures of selected designs
- Usage of the tool for installation (&fabrication) strategy optimization (automatic)
- Support to designers in detailing the F&I processes for the LIFES50+ sites and 50 unit wind farms
- Extension of analysis beyond installation to O&M phase

RAMBOLL

THANK YOU.

Contact: Denis.Matha@ramboll.com

The research leading to these results has received funding from the European Union Horizon2020 programme under the agreement H2020-LCE-2014-1-640741.

LIFES50+

