Analysis of experimental data: The average shape of extreme wave forces on monopile foundations compared to the New Force model

EERA Deepwind ’2017

Signe Schløer, Henrik Bredmose, Amin Ghadirian
Outset of the analysis
Extreme load cases

\[f = \rho R C_D u^2 + \rho A C_M u_t \]
Outset of the analysis
Extreme load cases

Shape of force?

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
Outset of the analysis

Extreme load cases

\[
\frac{F}{\rho ghR^2} = f\left(\frac{H_s}{gT_p^2}, \frac{h}{gT_p^2}, \gamma, \frac{R}{gT_p^2}, \frac{\nu}{\sqrt{ghR^2}}, \frac{t}{T_p}, \{x_j\}\right)
\]

\[
P\left(\frac{F_i}{\rho ghR^2} \leq \frac{F}{\rho ghR^2}\right) = f_1\left(\frac{H_s}{gT_p^2}, \frac{h}{gT_p^2}, \gamma, \frac{R}{gT_p^2}, \frac{\nu}{\sqrt{ghR^2}}\right)
\]

\[
\frac{F}{F_i} = f_2\left(\frac{F_i}{\rho ghR^2}, \frac{H_s}{gT_p^2}, \frac{h}{gT_p^2}, \gamma, \frac{R}{gT_p^2}, \frac{\nu}{\sqrt{ghR^2}}, \frac{t}{T_p}\right)
\]

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
Outset of the analysis

Extreme load cases

\[\frac{F}{\rho ghR^2} = f\left(\frac{H_s}{gT_p^2}, \frac{h}{gT_p^2}, \gamma, \frac{R}{\sqrt{ghR^2}}, \frac{t}{T_p}, \{x_j\}\right) \]

\[P\left(\frac{F_i}{\rho ghR^2} \leq \frac{F}{\rho ghR^2}\right) = f_1\left(\frac{H_s}{gT_p^2}, \frac{h}{gT_p^2}, \frac{R}{\sqrt{ghR^2}}, \gamma, \frac{t}{T_p}\right) \]

\[\frac{F}{F_i} = f_2\left(\frac{F_i}{\rho ghR^2}, H_s, \frac{h}{gT_p^2}, \frac{R}{\sqrt{ghR^2}}, \gamma, \frac{t}{T_p}\right) \]

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
Outset of the analysis

Extreme load cases

\[
\frac{F}{\rho ghR^2} = f \left(\frac{H_s}{gT_p^2}, \frac{h}{gT_p^2}, \gamma, \frac{R}{\sqrt{ghR^2}}, \frac{\nu}{T_p}, \{x_i\} \right)
\]

\[
P \left(\frac{F_i}{\rho ghR^2} \leq \frac{F}{\rho ghR^2} \right) = f_1 \left(\frac{H_s}{gT_p^2}, \frac{h}{gT_p^2} \right)
\]

\[
\frac{F}{F_i} = f_2 \left(\frac{F_i}{\rho ghR^2}, \frac{H_s}{gT_p^2}, \frac{h}{gT_p^2}, \frac{t}{T_a} \right)
\]

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
Outset of the analysis
Extreme load cases

\[
\frac{F}{\rho ghR^2} = f\left(\frac{H_s}{g T_p^2}, \frac{h}{g T_p^2}, \gamma, \frac{R}{\sqrt{ghR^2}}, \frac{\nu}{T_p}, \gamma, \{x_j\}\right)
\]

\[
P\left(\frac{F_i}{\rho g H_s R^2} \leq \frac{F}{\rho g H_s R^2}\right) = f_1\left(\frac{H_s}{g T_p^2}\right)
\]

\[
\frac{F}{F_i} = f_2\left(\frac{F_i}{\rho ghR^2}, \frac{h}{g T_p^2}, \frac{t}{T_a}\right)
\]

Functional dependencies of \(f_1\) and \(f_2\) to the wave parameters?
How well can the New Force model predict the force shapes?

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
Agenda

• The New Force model
• Experimental data
• Exceedance probability distributions of the free surface elevation and force signal
• Average shape of measured inline forces
• Comparison to the New Force model
• Conclusion
The New Force model

\[\eta_{\text{New Wave}} = \frac{\alpha_\eta}{\sigma_\eta^2} \sum_j \Re \{ S_\eta(\omega_j) \Delta \omega \exp \left(i \left(\omega_j(t - t_0) - k_j(x - x_0) \right) \right) \} \]

[Lindgren (1976), Boccotti (1983), Tromans (1991)]
The New Force model

\[\eta_{\text{New Wave}} = \frac{\alpha_\eta}{\sigma_\eta^2} \sum_j \text{Re}\{S_{\eta}(\omega_j)\Delta\omega \exp\left(i(\omega_j(t - t_0) - k_j(x - x_0))\right)\} \]

\[\Gamma(\omega) = i\rho \pi R^2 C_M \omega^2 / k \quad S_F(\omega) = |\Gamma(\omega)|^2 S_{\eta}(\omega) \]

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
The New Force model

\[
\eta_{\text{New Wave}} = \frac{\alpha_\eta}{\sigma^2_\eta} \sum_j \Re \left\{ \eta(\omega_j) \Delta \omega \exp \left(i \left(\omega_j(t - t_0) - k_j(x - x_0) \right) \right) \right\}
\]

\[
\Gamma(\omega) = i \rho \pi R^2 C_M \omega^2 / k \quad S_F(\omega) = |\Gamma(\omega)|^2 S_\eta(\omega)
\]

\[
F_{\text{New Force}} = \frac{\alpha_F}{\sigma^2_F} \sum_j \Re \left\{ |\Gamma(\omega_j)|^2 S_\eta(\omega_j) \Delta \omega \exp \left(i \left(\omega_j(t - t_0) - k_j(x - x_0) \right) \right) \right\}
\]

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
The New Force model

$$\eta_{\text{New Wave}} = \frac{\alpha_\eta}{\sigma_\eta^2} \sum_j \text{Re} \left\{ S_\eta(\omega_j) \Delta \omega \exp \left(i \left(\omega_j(t - t_0) - k_j(x - x_0) \right) \right) \right\}$$

$$\Gamma(\omega) = i\rho \pi R^2 C_M \omega^2 / k \quad S_F(\omega) = |\Gamma(\omega)|^2 S_\eta(\omega)$$

$$F_{\text{New Force}} = \frac{\alpha_F}{\sigma_F^2} \sum_j \text{Re} \left\{ |\Gamma(\omega_j)|^2 S_\eta(\omega_j) \Delta \omega \exp \left(i \left(\omega_j(t - t_0) - k_j(x - x_0) \right) \right) \right\}$$

$$\eta_{\text{New Force}} = \frac{\alpha_F}{\sigma_F^2} \sum_j \text{Re} \left\{ \Gamma^*(\omega_j) S_\eta(\omega_j) \Delta \omega \exp \left(i \left(\omega_j(t - t_0) - k_j(x - x_0) \right) \right) \right\}$$

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
The New Force model – 2nd order contribution

\[F^{(1)+(2)} = F^{(1)} + F_M^{(2)} \]

\[F_M^{(2)} = \rho \pi R^2 C_M \int_{-h}^{0} (u_i^{(2)} + u^{(1)} u_x^{(1)} + w^{(1)} u_z^{(1)}) dz + \rho R C_D \int_{-h}^{0} u^{(1)} |u^{(1)}| dz \]

\[+ \rho \pi R^2 (C_M - 1) \int_{-h}^{0} (u^{(1)} w_z^{(1)}) dz + \rho \pi R^2 C_M \eta_{NF}^{(1)} u_t^{(1)}. \]

Second order wave kinematics based on second order wave theory of Sharma and Dean (1981)
Model tests

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
Exceedance probability distributions of the free surface elevation and force signal

\[P(\cdot) \]

\[\eta/h \]

\[F/(\rho gh R^2) \]

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
Exceedance probability distributions of the free surface elevation and force signal

\[P \left(\frac{F_i}{\rho ghR^2} \leq \frac{F}{\rho ghR^2} \right) = f_1 \left(\frac{H_s}{gT_p^2}, \frac{h}{gT_p^2} \right) \]

\[\frac{H_b}{L_0} = \Lambda \left(1 - \exp \left(-1.5\pi \frac{h}{L_0} \right) \right) \]

[Goda et al. 1976]

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
Exceedance probability distributions of the free surface elevation and force signal

\[F/(\rho ghR^2) = 0.8 \]

\[F/(\rho ghR^2) = 1.0 \]

\[F/(\rho ghR^2) = 1.3 \]

\[F/(\rho ghR^2) = 1.6 \]

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures
The average force shape

\[
\frac{F}{\rho gh R^2} = 1.0
\]
The average force shape

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures

\[\sigma(t) = \frac{F(t)}{F_{\text{max}}(t)} \]

\[h/(gT_p^2) = 0.009 \quad h/(gT_p^2) = 0.014 \quad h/(gT_p^2) = 0.024 \]

\[\frac{F}{(\rho ghR^2)} = 0.8 \quad \frac{F}{(\rho ghR^2)} = 1.0 \quad \frac{F}{(\rho ghR^2)} = 1.3 \quad \frac{F}{(\rho ghR^2)} = 1.6 \]

\[t/T_a \]

Innovation Fund Denmark
RESEARCH, TECHNOLOGY & GROWTH
The average force shape

\[
\frac{F}{\rho gh R^2} = 0.8, 1.0, 1.3, 1.6
\]

\[
\frac{h}{(gT_p)^2} = 0.009, 0.014, 0.024
\]
Conclusion

For the considered sea states

- The probability distributions of the force peaks are function of $F/(\rho ghR^2)$, $H_s/(gT_p^2)$, $h/(gT_p^2)$ → possible to estimate the probability distributions of the force peaks from stochastic variables of the sea states.

- The normalised force shapes are function of $F/(\rho ghR^2)$, $h/(gT_p^2)$, t/T_a.
- For moderate nonlinear waves The New Force model of second order predicts the shapes of well.

Planned future work

- To predict force shapes of more nonlinear waves, more advanced wave models should be used together with the New Force model.
- Include multidirectional waves in the analysis
Thank you
sigs@dtu.dk

Acknowledgment
DeRisk is funded by a research project grant from Innovation Fund Denmark, grant number 4106-00038B. Further funding is provided by Statoil and the participating partners. All funding is gratefully acknowledged.