

Analysis of experimental data: The average shape of extreme wave forces on monopile foundations compared to the New Force model

EERA Deepwind '2017

Signe Schløer, Henrik Bredmose, Amin Ghadirian

DTU Wind Energy Department of Wind Energy DTU Mechanical Engineering Department of Mechanical Engineering

DTU Compute Department of Applied Mathematics and Computer Science

Outset of the anaysis

Extreme load cases

Outset of the anaysis

Extreme load cases

$$\begin{split} \frac{F}{\rho g h R^2} &= f\left(\frac{H_s}{g T_p^2}, \frac{h}{g T_p^2}, \gamma, \frac{R}{g T_p^2}, \frac{\nu}{\sqrt{g h R^2}}, \frac{t}{T_p}, \{x_j\}\right)\\ P\left(\frac{F_i}{\rho g h R^2} &\leq \frac{F}{\rho g h R^2}\right) &= f_1\left(\frac{H_s}{g T_p^2}, \frac{h}{g T_p^2}, \gamma, \frac{R}{g T_p^2}, \frac{\nu}{\sqrt{g h R^2}}\right)\\ \frac{F}{F_i} &= f_2\left(\frac{F_i}{\rho g h R^2}, \frac{H_s}{g T_p^2}, \frac{h}{g T_p^2}, \gamma, \frac{R}{g T_p^2}, \frac{\nu}{\sqrt{g h R^2}}, \frac{t}{T_p}\right) \end{split}$$

$$\frac{F}{\rho g h R^2} = f\left(\frac{H_s}{g T_p^2}, \frac{h}{g T_p^2}, \gamma, \frac{R}{g T_p^2}, \frac{\nu}{\sqrt{g h R^2}}, \frac{t}{T_p}, \{x_j\}\right)$$

$$P\left(\frac{F_i}{\rho g h R^2} \le \frac{F}{\rho g h R^2}\right) = f_1\left(\frac{H_s}{g T_p^2}, \frac{h}{g T_p^2}, \frac{R}{g T_p^2}, \frac{\nu}{\sqrt{g h R^2}}\right)$$

$$\frac{F}{F_i} = f_2\left(\frac{F_i}{\rho g h R^2}, \frac{H_s}{g T_p^2}, \frac{h}{g T_p^2}, \frac{R}{g T_p^2}, \frac{\nu}{\sqrt{g h R^2}}, \frac{t}{T_p}\right)$$

$$\frac{F}{\rho g h R^2} = f\left(\frac{H_s}{gT_p^2}, \frac{h}{gT_p^2}, \gamma, \frac{R}{gT_p^2}, \frac{\nu}{\sqrt{g h R^2}}, \frac{t}{T_p}, \{x_j\}\right)$$

$$P\left(\frac{F_i}{\rho g h R^2} \le \frac{F}{\rho g h R^2}\right) = f_1\left(\frac{H_s}{g T_p^2}, \frac{h}{g T_p^2}\right)$$

$$\frac{F}{F_i} = f_2 \left(\frac{F_i}{\rho g h R^2}, \frac{H_s}{g T_p^2}, \frac{h}{g T_p^2}, \frac{t}{T_a} \right)$$

Agenda

ν**,** g

F

h

H_s, T_p, γ

- The New Force model
- Experimental data
- Exceedance probability distributions of the free surface P elevation and force signal
- Average shape of measured inline forces
- Comparison to the New Force model
- Conclusion

$$\eta_{\text{New Wave}} = \frac{\alpha_{\eta}}{\sigma_{\eta}^2} \sum_{j} \text{Re} \left\{ S_{\eta}(\omega_j) \Delta \omega \exp\left(i \left(\omega_j (t - t_0) - k_j (x - x_0) \right) \right) \right\} \text{ [Lindgren (1976), Boccotti (1983), Tromans (1991)]}$$

$$\eta_{\text{New Wave}} = \frac{\alpha_{\eta}}{\sigma_{\eta}^2} \sum_{j} \text{Re} \left\{ S_{\eta}(\omega_j) \Delta \omega \exp\left(i \left(\omega_j(t-t_0) - k_j(x-x_0)\right)\right) \right\}$$

 $\Gamma(\omega) = \mathrm{i}\rho\pi R^2 C_M \omega^2 / k \qquad S_F(\omega) = |\Gamma(\omega)|^2 S_\eta(\omega)$

$$\eta_{\text{New Wave}} = \frac{\alpha_{\eta}}{\sigma_{\eta}^2} \sum_{j} \text{Re} \left\{ S_{\eta}(\omega_j) \Delta \omega \exp\left(i \left(\omega_j (t - t_0) - k_j (x - x_0)\right)\right) \right\}$$

$$\Gamma(\omega) = i\rho \pi R^2 C_M \omega^2 / k \qquad S_F(\omega) = |\Gamma(\omega)|^2 S_\eta(\omega)$$

$$F_{\text{New Force}} = \frac{\alpha_F}{\sigma_F^2} \sum_{i} \operatorname{Re}\left\{ \left| \Gamma(\omega_i) \right|^2 S_{\eta}(\omega_i) \Delta \omega \exp\left(i \left(\omega_j (t - t_0) - k_j (x - x_0) \right) \right) \right\}$$

$$\eta_{\text{New Wave}} = \frac{\alpha_{\eta}}{\sigma_{\eta}^2} \sum_{j} \text{Re} \left\{ S_{\eta}(\omega_j) \Delta \omega \exp\left(i \left(\omega_j(t-t_0) - k_j(x-x_0)\right)\right) \right\}$$

$$\Gamma(\omega) = i\rho\pi R^2 C_M \omega^2 / k \qquad S_F(\omega) = |\Gamma(\omega)|^2 S_\eta(\omega)$$

$$F_{\text{New Force}} = \frac{\alpha_F}{\sigma_F^2} \sum_{i} \operatorname{Re}\left\{ \left| \Gamma(\omega_i) \right|^2 S_{\eta}(\omega_i) \Delta \omega \exp\left(i \left(\omega_j (t - t_0) - k_j (x - x_0) \right) \right) \right\}$$

$$\eta_{\text{New Force}} = \frac{\alpha_F}{\sigma_F^2} \sum_{j} \text{Re} \left\{ \Gamma^*(\omega_j) S_{\eta}(\omega_j) \Delta \omega \exp\left(i \left(\omega_j (t - t_0) - k_j (x - x_0) \right) \right) \right\}$$

The New Force model – 2nd order contribution

$F^{(1)+(2)} = +F^{(1)} + F_{M}^{(2)}$

Second order wave kinematics based on second order wave theory of Sharma and Dean (1981)

0

t (s)

5

10

15

-5

-15

-10

Model tests

Exceedance probability distributions of Innovation Fund Denmark the free surface elevation and force signal

DeRisk – De-risking of ULS wave loads on offshore wind turbine structures

RESEARCH, TECHNOLOGY & GROWTH

Exceedance probability distributions of Innovation Fund Denmark

RESEARCH, TECHNOLOGY & GROWTH

the free surface elevation and force signal

Exceedance probability distributions of Innovation Fund Denmark the free surface elevation and force signal

RESEARCH, TECHNOLOGY & GROWTH

The average force shape

The average force shape

-4 -2 0 t/T₂(-)

d (-) d

 $F/F_{max}(-)$

d (-) d

 $F/F_{max}(-)$

d (-) 0

F/(pghR²)=1.3

F/(pghR²)=1.6

0

h/(gT_p²)=0.014

The average force shape

10

10

10

0.001

Deep water breaking limi H/L = 0.14

0.9 H

Stream function

Stokes' 5th or stream function 3

H_s=, T_p= 7.8m, 11.8s

7.4 m, 12.6 s 9.8 m, 11.8 s 9.2 m, 15.1 s 10.3 m, 15.1 s 6.1 m, 12.2 s

6.1 m, 12.6 s

7.1 m, 12.4 s 7.0 m, 14.7 s 7.6 m, 14.7 s 6.1 m, 8.9 s

0.2

Δ

0.02

h/(gT²)

Conclusion

For the considered sea states

- The probability distributions of the force peaks are function of $F/(\rho ghR^2)$, $H_{s}/(gT_{p}^{-2})$, $h/(gT_{p}^{-2}) \rightarrow$ possible to estimate the probability distributions of the force peaks from stocastic variables of the sea states.
- The normalised force shapes are function of $F/(\rho gh R^2)$, $h/(g T_p^2)$, t/T_a .
- For moderate nonlinear waves The New Force model of second order predicts the shapes of well.

Planned future work

- To predict force shapes of more nonlinear waves, more advanced wave models should be used together with the New Force model.
- Include multidirectional waves in the analysis

Thank you

sigs@dtu.dk

Acknowledgment

DeRisk is funded by a research project grant from Innovation Fund Denmark, grant number 4106-00038B. Further funding is provided by Statoil and the participating partners. All funding is gratefully acknowledged.

