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This talk presents conceptual design optimization of
jacket structures for offshore wind turbines
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A good jacket design has low mass
to minimize material, transportation, and installation costs
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To avoid resonance, the natural frequency must lie in the soft-stiff range )71/
P

between the 1p and 3p rotor frequencies g
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Reference jackets in the literature have very different leg distances
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Placing the same tower and turbine on two jackets

allows us to compare them =
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When cross sections are equal, a slender jacket will have a
lower mass and a lower frequency than a bulky jacket
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To satisfy the fatigue and ultimate limit states,
the cross sections have to change when the slenderness change
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The optimization problem for conceptual design is formulated with DTU
static loads, and constraints on stress, buckling, and frequency §

X = Ccross sections
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Damage equivalent loads are used to make an

approximate fatigue constraint using static stress constraints
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Damage equivalent loads are used to make an

approximate fatigue constraint using static stress constraints
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The problem is solved using the JAcket Design OPtimization tool JADOP
and the open source optimization solver IPOPT
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LOptimization.

cmn_lim.FLSstress
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Specify =ettings=s

= gettings;
Specify DIU 10 MW turbine and INNWIND.EU jacket without piles
Jeometry.Piles = 0; % 1 for pile=s, 0 for clamped.
Geometry.LegdistE = 24; % Leg distance at seabed
Jeometry.LegdistT = 14; % Leg distance at transition piece
Geometry.Sections = 4; % Humber of sections
Jeometry.Height = &7; % Jacket height (bottom of transition piece)
.Geometry.MSL h = 50; % Mean sea lewvel
Jeometry.Turbine = 1; E}L—D?JLEHH, 2—HNEELSME
Optimization settings DTU 10 MW' Tower’
.Optimization.flag = 1; turbine’ and loads
.Optimization.sand flag = 0;
LOptimization.maxlIter = L500;
LOptimization.constraints = {'SCF-validity';'S5tres=s ULS';'"'Buckling':

'Equivalent fatigue';'Frequency'}:

.Optimization.variable linking = '4nv';
.Optimization.scale obj = 1;
.Optimization.con lim.disp = 10;
.Optimization.scale stress = le—-&;
.Optimization.con lim.stress = J50ek;
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Parametric input

* Analytic sensitivities

Many types of constraints
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With leg distances from the INNWIND.EU jacket,
the mass was minimized to 870 tons in 2 minutes on a laptop
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Optimization of 400 jackets indicate that an increased top leg distance

reduces the jacket mass with about 20 percent
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Since transition piece mass increases with larger top leg distance,

. . o
the overall mass reduction is much less s
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High leg distances at both bottom and top
increase the natural frequency
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Reducing the bottom leg distance of the INNWIND.EU jacket

o
from 34 to 24 meters, reduces both overall mass and frequency pag
Jacket and transition piece mass Frequency
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In conclusion, the conceptual design optimization is a fast and useful tool [)7!)
for investigating key parameters such as leg distance pg

Bottom leg distance: 34 m =2 24 m
Mass: -6.7 percent

N Frequency: -2.8 percent
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In conclusion, the conceptual design optimization is a fast and useful tool [)7!)
for investigating key parameters such as leg distance pg
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EXTRA SLIDES
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Design according to
DNVGL offshore standard and recommended practices

DNVGL-OS-C101 Design of offshore steel structures
DNVGL-RP-C203 Fatigue design of offshore steel structures
DNV-RP-C202 Buckling strength of shells
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Optimal design problem

minimize
veER™ ueR™

subject to
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Load cases
Table 3: Description of static load cases

Load type Limit state Rotation [deg] Tower top load
1  Thrust Fatigue 0 Fp+M,+ %ﬂffz from Apt?z
2 Thrust Fatigue 45 by + M, + 5M, from AplH=
3 Torsion Fatigue 0 LiF, + 1f’vfy + M, from AplH=
4 Torsion Fatigue 45 %Fx + gﬂffy + M, from AplH=
5 Thrust Ultimate 0 F"* + M;™* from ||
6 Thrust Ultimate 45 F 4+ M from ||
7 Torsion Ultimate 0 M from [lg'
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Shell buckling

gb(v) — O¢hl (V'- usr FYh) g 0:'

where the shell buckling capacity in compression c:rb(v)._ is defined as
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DTU
o o
Column buckling =
Column buckling need only be assessed for element e if
(kLo)?A. _ 2.5E
> . 34
L 2 o (34)

where ik = 0.7 is the effective column length. To avoid assessing column buckling, the inverse of
equation (34) can be formulated as a non-linear constraint g.(v) < 0, where

3.20Y
ge(V) =1/ Eg kLo — d* + 2d.t, — 212 (35)
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SCF validity constraints

The linear constraints Ax < b enforce the SCF validity range

, which states that for a

joint where a brace is welded onto a leg, the dimensions should satisfy the following relations:

0~2dLeg — dB-race <0
dB-race - dLEg <0
U-QtLeg — tBrace < 0

{Brace — tLEg < 0,

and that for all elements, the following should hold

16t —d <0
d — 64t < 0.
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Stress
& SCF

27

In the analysis of the offshore wind turbine structure, we assume that only normal stress
o(v,u,&,n,¢) € R is significant. The normal stress in element e, position A, is computed as

ogep (v, u?, = E'b(v. T.u?, 12
es Th Th

where b(v,~,,) € R**!2 is the strain displacement vector for normal stress at postition h, and
E' is the materials Youngs modulus.

To account for stress concentrations in welded tubular joints, the recommended practice |2
provides a method using stress concentration factors (SCF's). This method assumes superposi-
tion of the normal stress components coming from axial forces (ax), moments in plane (mi) and
moments out of plane (mo). We decompose the normal stress o.,(v,u2,~;) by decomposing
the strain displacement vector:

b(v,5),) = b (v,5;,) + b™ (v, 7)) + b (v, 7)) (13)

The recommended practice then provides coefficients that are to be multiplied onto each stress
component. These coefficients are functions of diameter and thickness of all elements in the joint,
as well as joint geometry, and the position & along the element circumference. The number of
hot spots nj, in each element should be at least eight. The scf-stress gjgf (v,u,~;) in element
e, hot spot h is computed as

¥ (v,ud) = b f(v Y) Teud (14)
bSCf(V'. ’Th) SC V)beh (V ’Th) + SCH eh ( )bﬁf(v!ﬂ)/h)
+ SCER®()b(v.m) (15)



