

Technology for a real-time simulation-based system monitoring of wind turbines

Daniel Zwick, Tomáš Mánik, Asle Heide Vaskinn, Jon Tøndevoldshagen (all Fedem Technology AS / SAP SE)

EERA DeepWind'2017, 14th deep sea offshore wind R&D conference, 18 - 20 January 2017

to Outcomes

Demo Application **About Fedem Digital Inspection** Value Proposition **Proof of Concept** FEDEM = Finite Element Dynamics in Elastic Mechanisms **FEDEM WindPower Engineering and** analysis services 2010 2020 1980 1990 2000 Fedem (Technology) AS SAP SE acquires **Fedem Technology AS**

Our vision enables Digital Inspections of Wind Turbines based on real-time Digital Twins

Digital Inspection

Value Proposition

Proof of Concept

Demo Application

Goal: optimizing power production as well as minimizing structural DAMAGE under operation

Design

 Documented state of the system at any time combined with adaptive control systems may reduce the need for conservative safety factors.

Reduced CAPEX

Operation

- Continuously adapting the control strategy to maximize energy production while optimizing structural loading and condition.
- Recording accurate and reliable history of structural response enables costefficient prolongation of life beyond design lifetime.

Increased INCOME

Maintenance

- Preventive actions may be selected based on detailed insight into the development of structural integrity over time.
- Adaptive maintenance strategy can be based on actual accumulated damage and expected remaining life for different parts of the structure.

Increased **UPTIME**

Fedem wind demonstrator 2016

 Havøygavlen, Finnmark, owned and operated by ARCTIC WIND

 NORDEX N80 equipped with motion sensors since March 2016

- Data feed to server and digital twin representing state of system in real-time
- Online application for data access
- Partially funded by Innovation Norway

Strain gauge verification

- Comparison of physical and virtual strain gauges at tower bottom
- Demonstrator limited to first order movements of the tower structure based on IMU at tower top

Strain gauge verification

- Production to stop scenario
- Tower structure oscillates in its first eigenmode for several minutes
- Data compliance in both amplitude and period achieved by virtual strain gauges

Fatigue analysis

- Simulation study on the contribution of structural modes to fatigue
- Number of recorded structural modes by sensors determines the accuracy that can be achieved in the fatigue analysis

Simulation studies and further work

- Bottom-fixed and floating offshore wind turbine
- Extending the solution to cover complete wind turbine system
- Transferring technology into other industries

