

A METAHEURISTIC SOLUTION METHOD FOR OPTIMIZING VESSEL FLEET SIZE AND MIX FOR MAINTENANCE OPERATIONS AT OFFSHORE WIND FARMS UNDER UNCERTAINTY

EERA DEEPWIND'2017, TRONDHEIM, 18 JANUARY 2017

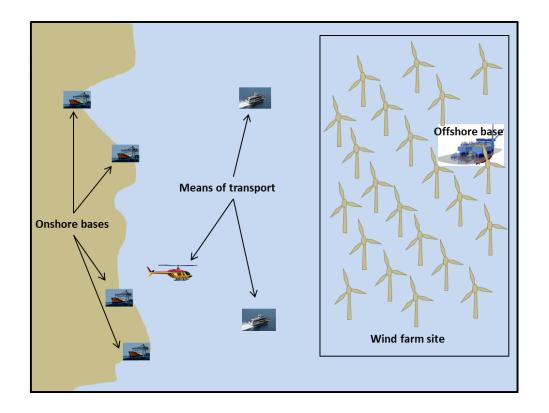
Elin E. Halvorsen-Weare¹, Inge Norstad¹, Magnus Stålhane², Lars Magne Nonås¹

¹Department of Maritime, SINTEF Ocean ²Department of Industrial Economics and Technology Management, NTNU

2 Vessel fleet optimization model

- **3** Solution method
- 4 Application on a reference case

2 Vessel fleet optimization model


- **3** Solution method
- 4 Application on a reference case

Deep sea offshore wind O&M logistics - Challenges

- Large number of turbines
 - Many maintenance tasks
- Large distances
- Marine operations
- Accessibility to wind farm and turbines
 - Weather restrictions


O&M at offshore wind farms

Focus on the maritime transportation and logistic challenges:

- Need to execute maintenance tasks at wind turbines
 - Preventive maintenance tasks
 - Scheduled tasks
 - Corrective maintenance tasks
 - Component failure requiring repair or replacement
- Need to transport technicians, spare parts etc. from a maintenance base to the turbines
 - From which maintenance ports/bases?
 - By which vessel resources?

Which vessel resources are most promising for a given offshore wind farm?

Evaluating all possible vessel fleets is impractical and time consuming, and often impossible

10 vessel types, 0-3 vessels each → $2^{20} \approx 1$ million combinations

2 Vessel fleet optimization model

- **3** Solution method
- 4 Application on a reference case

Vessel fleet optimization model for O&M

Main idea:

• Create a decision support tool for selecting the best logistical resources, i.e. vessels, infrastructure and related resources, and the best deployment of these resources to execute maintenance tasks at offshore wind farms

Why?

- Many options for vessels and infrastructure configurations, maintenance strategies, and site specific considerations makes it difficult to get a good overview without strategic analytical tools to evaluate the solution space
- Offshore wind farms at deep sea locations creates the need to develop new technology and logistics strategies, that need to be evaluated from an economical perspective

Development of vessel fleet optimization model

Vessel fleet optimization model – developed through various research projects:

NOWITECH ((2010 – 2017)
-------------------	---------------

Initialization of development

Development of stochastic mathematical model for vessel fleet optimization

FAROFF (2012 – 2013)

Developed first prototype of vessel fleet optimization model

• Deterministic mathematical model for vessel fleet optimization

LEANWIND (2013 – 2017)

Development of heuristic solver for the stochastic vessel fleet optimization model

- Pattern-based mathematical formulation
 - Candidate patterns generated for vessel and base combinations
 - Based on vessel characteristics and compatibility with maintenance tasks
- Patterns are input to the mathematical model
 - Two-stage stochastic model formulation
- Stochastic parameters
 - Weather conditions (wind and wave)
 - Corrective maintenance tasks (generated based on failure rates)

- Variables:
 - Which vessels to use
 - Short-term or long-term charter?
 - Which maintenance patterns vessels should execute
 - Which maintenance ports/bases to use
- Objective: Minimize total cost
 - Time charter costs
 - Port/base costs
 - Fuel costs and other voyage related costs
 - Downtime cost
- All maintenance tasks should be executed within the planning horizon, or they are given a penalty cost

$$\min \sum_{k \in K} C_k^F \delta_k + \sum_{k \in K} \sum_{v \in V_k} C_v^F x_{kv}^L + \sum_{k \in K} \sum_{v \in V_k} \sum_{t \in P^T} C_{vl}^F x_{kvt}^S + \sum_{k \in K} \sum_{v \in V_k} \sum_{t \in N^C \cap N_v} \sum_{j \in N_{is}^C} \sum_{p \in P_{vijs}} C_{ijps}^D y_{vijps} + \sum_{k \in K} \sum_{v \in V_k} \sum_{w \in W_{kv}} \sum_{i \in N^P \cap N_v} \sum_{p \in P_{kvws}} C_{ips}^D A_{iw} \lambda_{kvwps} + \sum_{i \in N^P} C_i^P z_{is} + \sum_{i \in N^C} \sum_{j \in N_{is}^C} C_i^P z_{ijs} \right].$$

$$(1)$$

Objective function

$x_{kv}^L + x_{kvt}^S \le Q_{kv}\delta_k,$	$k \in K, v \in V_k, t \in P^T,$	(2)
$\delta_{k1} + \delta_{k2} \le 1,$	$(k1, k2) \in K^C,$	(3)
$\delta_k \ge E_k,$	$k \in K,$	(4)
$x_{kv}^L \ge E_{kv},$	$k \in K, v \in V_k,$	(5)
$\sum_{k \in K} x_{kvt}^S \le Q_{vt}^{MX},$	$v \in V, t \in P^T,$	(6)
$\delta_k \in \left\{0,1\right\},$	$k \in K$,	(7)
$x_{kv}^L \in Z^+,$	$k \in K, v \in V_k,$	(8)
$x_{kvt}^S \in Z^+,$	$k \in K, v \in V_k, t \in P^T.$	(9)

First stage constraints

 $\mathcal{S},$

$$\begin{split} \sum_{k \in K} \sum_{v \in V_k \cap V_i} \sum_{w \in W_{kv}} \sum_{p \in P_{kvws}} A_{iw} \lambda_{kvwps} + z_{is} = A_i, \quad i \in N^P, s \in S, \qquad (10) \\ \sum_{v \in V_i} \sum_{p \in P_{vijs}} y_{vijps} + z_{ijs} = 1, \qquad i \in N^C, s \in S, j \in N_{is}^C, \qquad (11) \\ \sum_{k \in K} \sum_{w \in W_{kv}} A_{iw} \lambda_{kvwps} - \sum_{j \in N_{is}^C} y_{vijps} = 0, \qquad v \in V, i \in N^C \cap N_v, p \in P_v, s \in S, \qquad (12) \\ \sum_{w \in W_{kv}} \lambda_{kvwps} \leq x_{kv}^L + x_{kvt}^S, \qquad (13) \\ \sum_{v \in V} \sum_{w \in W_{kv}} M_v \lambda_{kvwps} \leq M_k \delta_k, \qquad k \in K, v \in V_k, p \in P_v, t \in P^T | p \in t, s \in S, \qquad (13) \\ \lambda_{kvwps} \in Z^+, \qquad (15) \\ y_{vijps} \in \{0, 1\}, \qquad (16) \\ z_{is} \in Z^+, \qquad i \in N^P, s \in S, \qquad (17) \\ z_{ijs} \in \{0, 1\}, \qquad i \in N^C, s \in S, j \in N_{is}^C. \qquad (18) \end{split}$$

Second stage constraints

2 Vessel fleet optimization model

- **3** Solution method
- 4 Application on a reference case

Metaheuristic solution framework

Greedy randomized adaptive search procedure – GRASP

- 1. Construct an initial feasible solution to the problem by a greedy randomized algorithm
- 2. Improve the initial feasible solution by a local search procedure
- 3. Continue until stopping criterion is met

16

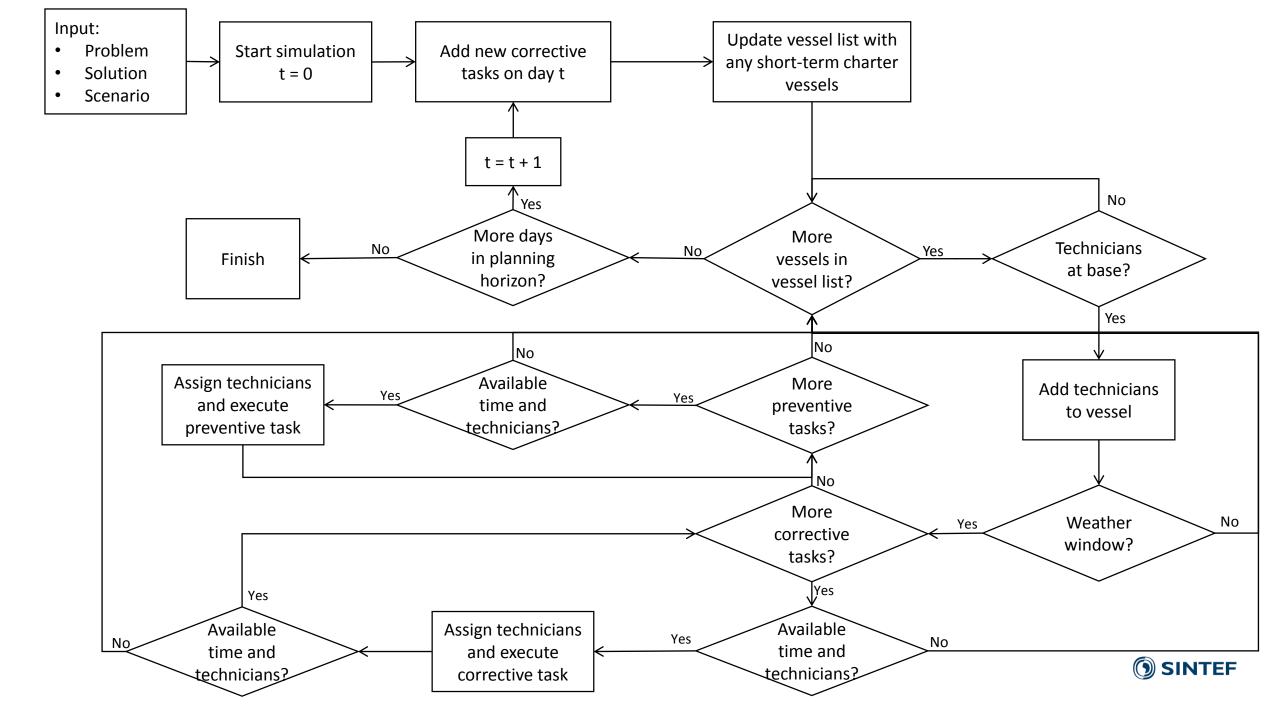
All candidate solutions are evaluated by a simulation procedure taking into account uncertainty in weather conditions and corrective maintenance tasks

Local search algorithm

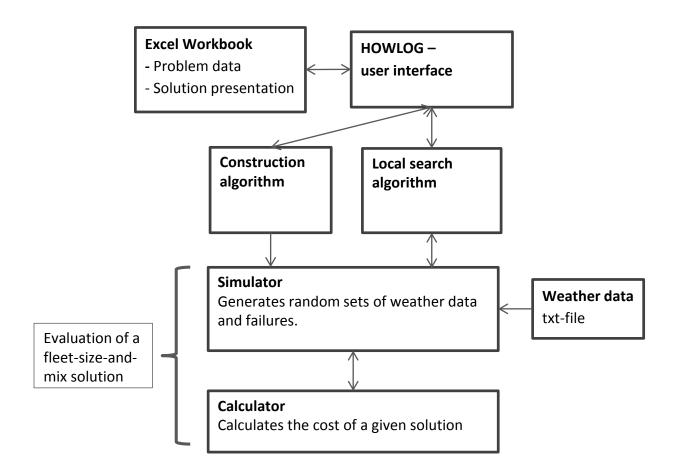
Explore neighborhood solutions to an initial solution:

- Add vessel long-term
- Remove vessel long-term
- Add vessel short-term
- Remove vessel short-term
- Remove base
- Swap bases
- Swap vessels long-term
- Swap vessels short-term

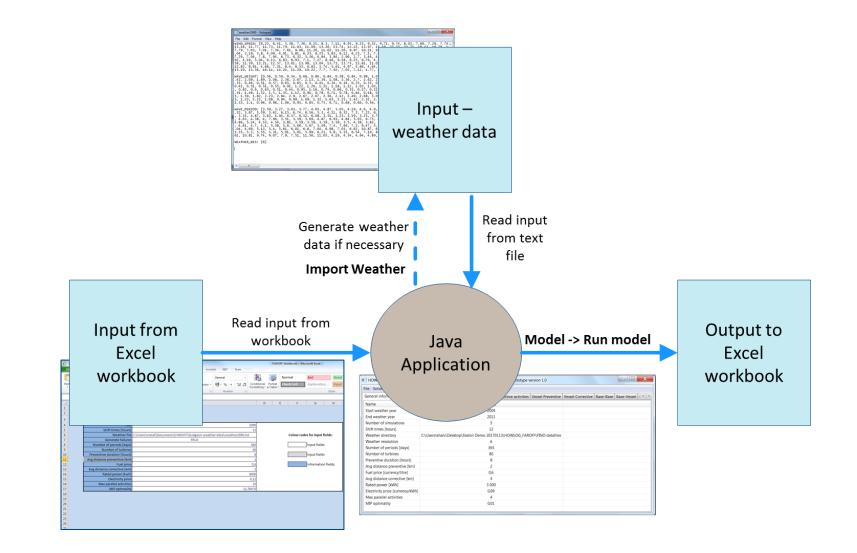
Evaluation of candidate solutions


• Scenario generator

• Generates a number of weather data sets and corrective maintenance tasks sets


Calculator

• Calculates the objective function value of a solution for a given weather data and corrective maintenance task set



Overview metaheuristic framework

Configuration of vessel fleet optimization tool

2 Vessel fleet optimization model

- **3** Solution method
- 4 Application on a reference case

Application on a reference case

(Sperstad et al. 2016)

- Wind farm with 80 3MW turbines
- 50 km distance to onshore maintenance base
- One type of preventive maintenance: 60 hours work x 80 turbines
- Three types of corrective maintenance: Failure rates 7.5, 3 and 0.825
- Weather data from FINO1 metocean platform
- Electricity price 90 GBP/MWh

Available vessel resources

Vessel type name	Hs limit [m]	Transfer speed [knots]	Day rate [GBP]	Technician transfer space	Access time [min]	# available vessels
Crew transfer vessel (CTV)	1.5	20	1 750	12	15	5
Surface effect ship (SES)	2.0	35	5 000	12	15	5
Small accommodation vessel (SAV)	2.0	20	12 500	12	15	1
Mini mother vessel (MM)	2.5	14	25 000	16	30	1
Daughter vessel (DM)	1.2	16	N/A	6	15	2

Results

	GRASP	EXACT	
Vessel fleet	2 SES	2 SES	
Expected total cost	13 438 089	13 318 186	
Vessel cost	3 650 000	3 650 000	
Voyage cost	2 098 533	2 016 700	
Downtime cost	7 689 544	7 651 486	
Electricity based availability	92.96 %	93.02 %	
Computational time [s]	144	7 961	

GRASP method has been implemented in Java, number of simulations on each candidate solution was 30. EXACT method has been implemented in the Mosel language and solved by FICO[™] Xpress, number of scenarios was 5, and optimality gap was set to 1.0%.

Application areas

• Offshore wind farm developers

- Which are the optimal maintenance vessel resources?
- Which are the optimal maintenance ports/bases and what type of characteristics should they have?
- When should the maintenance activities be scheduled?
- Maintenance vessel developers and innovators
 - Cost/benefit analysis for evaluating/choosing among existing vessels
 - Early phase feedback for design of new vessels
- Maintenance concept developers and innovators
 - Cost/benefit analysis of new concepts and the potential effects on the logistic systems

2 Vessel fleet optimization model

- **3** Solution method
- 4 Application on a reference case

- Determining optimal vessel fleets for maintenance operations at offshore wind farms is challenging
- We have developed a vessel fleet optimization model for decision support
- An efficient metaheuristic solution procedure has been implemented
 - Greedy randomized adaptive search procedure
 - Uncertainty in weather conditions and corrective maintenance tasks considered by a simulation procedure
 - Reports optimal vessel fleet compared with exact solution method
- Decision support tool can aid many actors in the offshore wind
- ²⁸ industry

References

- Cradden, L.; Gebruers, C.; Halvorsen-Weare, E.E.; Irawan, C.; Nonås, L.M.; Norstad, I.; Pappas, T.; Schäffer, L.E. (2016), "Mathematical optimisation models and methods for transport systems". LEANWIND Deliverable 5.6.
- Sperstad, I.B.; Stålhane, M.; Dinwoodie, I.; Endrerud, O.-E.V.; Martin, R.; Warner E. (2016), "Testing the Robustness of Optimal Vessel Fleet Selection for Operation and Maintenance of Offshore Wind Farms". (Unpublished.)
- Stålhane, M.; Halvorsen-Weare, E.E., Nonås, L.M. (2014), "FAROFF Optimization model technical report", MARINTEK Report MT2014 F-097.
- Stålhane, M.; Halvorsen-Weare, E.E.; Nonås, L.M. (2016), "A decision support system for vessel fleet analysis for maintenance operations at offshore wind farms", Working paper. (Unpublished.)

Technology for a better society