Air-Sea Interaction at Wind Energy Site in FINO1 Using DCF (Lidar) Measurements from OBLEX-F1 campaign

> Mostafa Bakhoday Paskyabi, Martin Flugge Joachim Reuder (Mostafa Bakhoday@uib.no)

How to measure wind and turbulence from on both sides of wavy interface Wind M Ε 0 Μ n m е а S r n Bubbles g S U y m Tidal front LC Current Stratification

)

Outline

- Measurement site (FINO1)
- Measuring techniques
- DCF systems and sea waves
- Wind-current interaction
- Conclusions

	Cup (100m)
Vane (90m)	Cup (90m)
USA (80m)	Cup (80m)
Vane (70m)	Cup (70m)
USA (60m)	Cup (60m)
Vane (50m)	Cup (50m)
USA (40m)	Cup (40m)
Vane (33m)	Cup (33m)
	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNE

Fig.1: The FINO1 - Platform in the North Sea

In Fig. 1 the positions of the sensors for wind spe

Measurement site: FINO1

Offshore Boundary Layer Experiment FINO1 (OBLEX-F1)

From June 2015 to September 2016.

- Wave statistics, surface currents and turbulence

Environmental conditions

Friction velocity calculated from cup-anemometer at 33-m height.

 $U_{10} = U(z_1) + \frac{u_*}{\kappa} \ln\left(\frac{10}{z_1}\right)$

Here C_p is the phase speed of the

surface waves at the spectral peak.

DCF system at 15-m

Wake characteristics: Lidar Data

DCF system at 15-m

Wave affected frequency band calculated from Buoy data

DCF system at 15-m

DCF system at 15-m: flow distortion

 $u_* = (|\tau|/\rho)^{1/2}$ is the friction velocity,

DCF system at 15-m: friction velocity

$$\tau = -\rho \left(\overline{u'w'}\hat{i} + \overline{v'w'}\hat{j} \right),$$
$$u_* = \left(|\tau|/\rho \right)^{1/2}$$

Taylor Diagram at FINO1

DCF systems: drag coefficient

DCF system at 15-m: some statistics

$$f(u_h; b; a) = \frac{a}{b} \left(\frac{u_h}{a}\right)^{b-1} e^{-\left(\frac{u_h}{a}\right)^b},$$

two-parameter Weibull distribution provides a reliable approximation to the 0.1 probability density function of wind horizontal speed

An analytic expression for the PDF is in Good agreement with the observed one By means of efficiently capturing the behavior of higher moments.

DCF system at 15-m: wind-wave

horizontal momentum equation in the presence of waves

It is possible to use the wave-induced air pressure perturbation and wave slope in order to quantify the wave-induced momentum flux.

Bakhoday-Paskyabi et al 2014 Wetzel 1996 Due to the lack of sufficient knowledge about the structure of the wave-induced pressure field, we can use either parameterization or measured velocity spectra to estimate wave-induced stress.

DCF system at 15-m: wind-wave

Ocean currents: uplooking ADCP

Surface current and wind interaction

At low frequencies, the CW Component seems more energetic, in particular near the inertial frequency.

From rotary cross-spectra, It is possible to assess the phase characteristics between him and waves and to measure the correlation amplitude.

Conclusions

- There are significant scatters for light wind and swell wave conditions which might be explained by the residual effects of flow distortion.
- For high wind conditions, effects of wave-age is more pronounced in DCF measurements at 15-m height.
- ➤ Wave signature has been detected in measurements from ECF at 15-m height above MSL.
- Empirical expressions for the probability distribution is in good agreement with the observed ones for both calm and wavy sea-state conditions.
- There exist an almost large deflection angle between wind and surface currents for low frequencies (lower than 1/12 cph).
- All oceanographic data have been successfully analyzed and the first results with focus on processing and farm-wind-current interaction can be found in Bakhoday-Paskyabi et al (2017).

Acknowledgment

OBLEX-F1 was coordinated in collaboration between the University of Bergen (Geophysical Institute) and Christian Michelsen Research AS (project executing organization). The Federal Maritime and Hydrographic Agency of Germany (BSH) is acknowledged for providing the FINO1 reference data through the FINO database at http://fino.bshde/. The FINO project (research platforms in the North Sea and Baltic Sea) is funded by the BMU, the German Federal Ministry for the Environment, Nature Conservation, Building and Nu- clear Safety in collaboration with Project Management Ju⁻lich GmbH (project no. 0325321). The FINO1 meteorological reference data were provided by Deutsches Windenergi Institut (DEWI) and the FINO1 oceanographic reference data were provided by the BSH. We also thank DEWI for providing the FINO1 high res- olution sonic anemometer data, and the FINO1 platform operator Forschungs- und Entwicklungszentrum Fachhochschule Kiel GmbH (FuE Kiel GmbH) for their support (project no. 0329905E). We thank Steffen Howorek and Andreas Gudi (FuE Kiel GmbH), and Benny Svardal, Stian Stavland for their invaluable support in deploying and maintaining the meteorolog- ical instrumentation during the campaign. We also thank Prof. Ilker Fer the crew of RV H[°]akon Mosby, Helge T. Bryhni, and Steinar Myking for their professional deployment and retrieval of the oceanographic instrumentation.