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How to measure wind and turbulence from
Wind on both sides of wavy interface
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Fig.1: The FINO1 — Platform in the North Sea

In Fig. 1 the positions of the sensors for wind spe



Measurement site: FINO1

Offshore Boundary Layer Experiment FINO1 (OBLEX-F1)

From June 2015 to September 2016.
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Wave statistics, surface currents and turbulence



FINO1, 91.5m LAT

Deployment configuration
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Environmental conditions

Friction velocity calculated from cup-anemometer at 33-m height.

Use 10 0.11 T T T T T T T T T T T

0.1} developing $ea
Here C is the phase speed of the
Y

0.09

0.08 |

| n |
0.07} l |
. \
<5 0.06 r

] 0.05FJI; -------- M‘H ' 1 L LY | N
RS T | . H ’*]q’]! T

surface waves at the spectral peak.

0.03 | \

0.02F Old Sea

0.01

. - 160 162 164 166 168 170 172 174 176 178 180
TOGA COARE 3.0 parameterization Yearday 2015



DCF system at 15-m
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Wake characteristics: Lidar Data

DIStortlon assessed PPI scan -- Time: 25-Jun-2015 00:00:09
at location of AV01 Elevation angle: 10 deg
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DCF system at 15-m
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DCF system at 15-m

Lidar data to check distorted
Wave-wind interaction Flow characteristics

PPI scan -- Time: 25-Jun-2015 06:29:51
Elevation angle: 10 deg
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DCF system at 15-m: flow distortion
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u, = (|fr|/p)1/2 is the friction velocity,
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DCF systems: drag coefficient
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DCF system at 15-m: some statistics
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DCF system at 15-m: wind-wave

horizontal momentum equation in the presence of waves
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It is possible to use the wave-induced air pressure perturbation and
wave slope in order to quantify the wave-induced momentum flux.

Due to the lack of sufficient knowledge about the structure of the wave-induced pressure field,
Bakhoday-Paskyabi et al 2014

Wetzel 1996 we can use either parameterization or measured velocity spectra to estimate wave-induced stress.



DCF system at 15-m: wind-wave
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Surface current and wind interaction

At low frequencies, the CW
Component seems more
energetic, in particular near
the inertial frequency.

From rotary cross-spectra,

It is possible to assess the
phase characteristics between
wind and waves and to
measure the correlation
amplitude.

Bakhoda-Paskyabi & Rohre 2017, under preparation
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Conclusions

» There are significant scatters for light wind and swell wave conditions which might be
explained by the residual effects of flow distortion.

» For high wind conditions, effects of wave-age is more pronounced in DCF
measurements at 15-m height.

» Wave signature has been detected in measurements from ECF at 15-m height above MSL.

» Empirical expressions for the probability distribution is in good agreement with
the observed ones for both calm and wavy sea-state conditions.

» There exist an almost large deflection angle between wind and surface currents
for low frequencies (lower than 1/12 cph).

» All oceanographic data have been successfully analyzed and the first results with focus on
processing and farm-wind-current interaction can be found in Bakhoday-Paskyabi et al (2017).
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