

Coherent structures in wind measured at a large separation distance

Hálfdán Ágústsson, Knut Harstveit and Tuuli Pilvi Miinalainen

Kjeller Vindteknikk AS

halfdan.agustsson@vindteknikk.no

Statens vegvesen

Experience from 'extreme' bridges

- The Norwegian Public Roads Administration shall bridge the remaining ferry crossings along road E39:
 - → Fjord widths 2-7.5 km
 → Fjord depths 300-1300 m
 → High and variable wind, wave and current loads

Statens vegvesen

Norwegian Public Roads Administration

Design loads and climatic conditions

- Very high resolution (500 m) meso-scale atmospheric simulations
 - Estimating wind climate and extreme winds
 - → Input to high-res. wave (ROMS) and current (SWAN) models
- High frequency measurements of wind at several levels in tall meteorological masts:
 - →Verification of simulated winds
 →Assessment of design loads and climatic conditons

Measurements masts - overview

Site	Fjord	Mast height	Mast type	Data start
Julbø	Julsundet	50 m	Guyed pipe mast	07.02.2014
Midsund	Julsundet	50 m	Guyed pipe mast	06.02.2014
Nautneset	Julsundet	68 m	Lattice tower	07.07.2016
Halsaneset	Halsafjorden	50 m	Guyed pipe mast	26.02.2014
Åkvik	Halsafjorden	50 m	Guyed lattice mast	06.03.2015
Kvitneset	Sulafjorden	96 m	Guyed lattice mast	24.11.2016
Trælboneset	Sulafjorden	78 m	Guyed lattice mast	Spring 2017
Langeneset	Sulafjorden	98 m	Lattice tower	Spring 2017
Kårsteinen	Sulafjorden	62 m	Lattice tower	Spring 2017
Rjåneset	Vardalsfjorden	72 m	Guyed lattice mast	Spring 2017
Synnøytangen	Bjørnafjorden	50 m	Guyed pipe mast	23.02.2015
Svarvehelleholmen	Bjørnafjorden	50 m	Guyed pipe mast	18.03.2015
Ospøya 1	Bjørnafjorden	50 m	Guyed pipe mast	03.12.2015
Ospøya 2	Bjørnafjorden	50 m	Guyed pipe mast	17.12.2015
Landrøypynten	Langenuen	50 m	Guyed pipe mast	06.03.2015
Nesøya	Langenuen	50 m	Guyed pipe mast	24.02.2015

Data coverage: 98-99%

Measurement sites in Bjørnafjorden

Measurements at Ospøya in Bjornafjørden

Measurements at Ospøya

Wind measurements

- 1. Made by group of engineers/technicians at KVT
- 2. Installed 10 50 m high masts in 2014 2015
- 3. Installed/planned 5 <u>80 100 m</u> high masts, for start in 2016 2017
- 4. 3 sensors in each mast, at 2 or 3 levels
- 5. Data sampling frequency: 10 Hz
- 6. Wind components: u, v, w
- 7. Transfer to Kjeller Vindteknikk every hour
- 8. Driven by batteries with solar cell charging Battery voltages is monitored on daily basis
- 9. Data availability 95 % 99 %
- 10. All raw data also stored for inspection and for spectral and coherence analysis
- **11.** Data are filtered for spike and error removals
- Twice a year: Reports written including long term statistics and extreme value analysis

Gill WindMaster Pro 3-Axis Anemometer

Systematic analysis of coherence and spectra

- All analysis done using python, scipy, numpy, pandas, stats...
- Approximately 1 year of 10 Hz data from 4 synchronized anemometers
- Turbulence spectra, autocorrelation and integral length scales analysed for each 20 minute period
- Coherence analyzed for each:
 - 20 minute period at short distances (8 and 16 m)
 - 60 minute period at long distances (~260 m)
- Data is filtered, detrended and tapered using a Hann-window
- Main wind direction (U) is rotated along the flow
- Spectra based on a periodogram-method with Tukeywindowing, results scaled with frequency and std. dev. of wind.
- Coherence based on cross spectral density and power spectral densities based on Welch's method, with 4 segments and 50% overlap within segments, results scaled with f and σ^2

Methodology for analysis of coherence and spectra

- Reference curves for spectra and coherence are based on handbooks H185 and H400, used in the design of bridges.
- Large sets of calculated spectra and coherences are fitted to the models (Davenport) prescribed in the handbooks, for given wind directions and wind speeds U>10 m/s.

The computed turbulence spectras and coherences for measured data were compared to Statens vegvesens guideline book values, referred as "H185". The handbook value for scaled turbulence spectra is computed by

$$\frac{\frac{fS_{i}}{\sigma^{2}} = \frac{A_{i}f_{i}^{'}}{\left(1+1.5A_{i}f_{i}^{'}\right)^{\frac{5}{3}}},$$

$$f_{i}^{'} = \frac{fL_{u}(z)}{U(z)},$$

and |U|z| is the mean wind speed. The coefficients for different wind components are $A_{\mu}=6.8$, $A_{\nu}=9.4$ and $A_{\mu}=9.4$. Moreover, the length scale $L_{\mu}(z)$ for guideline reference is computed by

$$L_i(z) = c * 100 * (0.1 * z)^{0.3},$$

Where one has coefficients $c_i = [1, \frac{1}{4}, \frac{1}{12}]$ for u, v and wcomponents.

Coherence series by hand book are computed with Davenport-model,

$$Coh_{135} = \exp\left(-C_{ij}\frac{f\Delta s}{U(z)}\right)$$
,

where $C_{\mu} = [10, 6.5, 3]$ and Δs is the distance between sensors.

Example wind series during an easterly event 50 m agl, 22-23 UTC, 9. January 2016

Example turbulence spectra (easterly wind) 50 m agl, 20 minutes at 22 UTC, 9. January 2016

VINDTEKNIKK

Integral length scales

Systematic analysis based on 20 minute periods (shown for another station than Ospøya)

Vertical coherence at Ospøya at 16 m (easterly wind) 33-50 m agl, 20 minutes at 22 UTC, 9. January 2016

Horizontal coherence at Ospøya at 8 m (easterly wind) 50 m agl, 20 minutes at 22 UTC, 9. January 2016

Horizontal coherence at Ospøya at 260 m (easterly wind) 50 m agl, 60 minutes at 22 UTC, 9. January 2016

Horizontal coherence at Ospøya at 260 m (easterly wind) 50 m agl, 60 minutes at 23 UTC, 9. January 2016

Horizontal coherence at Ospøya at 260 m (easterly wind) 50 m agl, 60 minutes at 4 UTC, 10. January 2016

Horizontal coherence at Ospøya at 260 m (westerly wind) 50 m agl, 60 minutes at 11 UTC, 28. January 2016

Ospøya horizontal coherens over 260 m distance

From the H400 handbook

Kospektra $S_{i_1i_2}$ på normalisert form for separasjon normalt på hovedstrømsretningen, horisontalt (y) eller vertikalt (z), er gitt ved:

 $\frac{\operatorname{Re}\left[S_{i_{1}i_{2}}(n,\Delta s_{j})\right]}{\sqrt{S_{i_{1}}(n)} \cdot S_{i_{2}}(n)} = \exp\left(-C_{i_{j}}\frac{n\Delta s_{j}}{v_{m}(z)}\right)$ (5.6)

hvor Δs_j er horisontal- eller vertikalavstanden mellom betraktete punkter, og: $i_1, i_2 = u, v, w$ j = y, z $C_{uy} = C_{uz} = 10,0$, C_{vy} , $= C_{vz} = C_{wy} = 6,5$, $C_{wz} = 3,0$

For horizontal coherence from east and west, Cuy=10, Cvy=6.5 and Cwy=6.5 ifølge håndboken (Davenport model). Here named Cuu, Cvv and Cww in order to not mix up with Cij, $i \neq j$

Coherence is calculated for all 1 hour periods measured, with wind speed > 10 m/s and easterly/westerly flow, and model fitted to the data

Calculation of coefficients with Davenports cospectra with percentiles of optimized Cij

Obs. Handbook

				P=0.05	P=0.1	P=0.5	H400
U	Cuu	Ø	EXP(-cij*DS*f/Vm)	4.3	5.0	8.7	10
		Ø	-EXP(-cij*DS*f/Vm)	16.3	16.6	42.3	10
		V	EXP(-cij*DS*f/Vm)	10.3	11.1	14.7	10
		V	-EXP(-cij*DS*f/Vm)	11.5	12.2	37.2	10
V	Cvv	ø	EXP(-cij*DS*f/Vm)	4.4	5.1	9.8	6.5
		Ø	-EXP(-cij*DS*f/Vm)	10.3	10.9	15.9	6.5
		V	EXP(-cij*DS*f/Vm)	8.5	8.8	14.7	6.5
		V	-EXP(-cij*DS*f/Vm)	10.2	12.7	197.0	6.5
w	Cww	ø	EXP(-cij*DS*f/Vm)	6.4	7.8	14.1	6.5
		Ø	-EXP(-cij*DS*f/Vm)	12.4	13.0	21.6	6.5
		V	EXP(-cij*DS*f/Vm)	8.2	8.4	13.2	6.5
LLER		V	-EXP(-cij*DS*f/Vm)	10.1	11.9	20.6	6.5

Calculation of coefficients with Davenports cospectra with percentiles of optimized Cij. Effect of lag at one station.

P=0.1	-6s	-3s	0s	1s	3s	6s	9s
ALLE Cij,i=j fra Ø							
EXP(-cij*DS*f/Vm)	5.8	5.9	6.0	5.8	6.0	6.0	6.5
-EXP(-cij*DS*f/Vm)	12.0	12.6	13.5	12.7	17.5	17.5	15.0
ALLE Cij,i=j fra V							
EXP(-cij*DS*f/Vm)	9.4	9.4	9.4	8.4	6.1	6.3	9.1
-EXP(-cij*DS*f/Vm)	13.8	13.2	12.2	11.8	10.1	12.0	10.8
P=0.5	-6s	-3s	0s	1s	3s	6s	9s
ALLE Cij,i=j fra Ø							
EXP(-cij*DS*f/Vm)	11.0	11.0	10.9	10.8	10.0	10.0	11.1
-EXP(-cij*DS*f/Vm)	21.0	19.9	26.6	22.7	69.3	69.3	20.6
ALLE Cij,i=j fra V							
EXP(-cij*DS*f/Vm)	14.6	14.4	14.2	13.8	11.3	9.8	14.6
-EXP(-cij*DS*f/Vm)	82.8	77.1	84.9	83.3	52.6	108.3	81.1

Main conclusions and summary

- Present systematic analysis of coherence (and spectra) from a unique measurement site in an open fjord
- 1) The coherence is higher (lower persentiles of Cij) for easterly than for westerly wind
- 2) For easterly wind, no differences in the 0.05, 0.1, and 0.5 percentiles of Cij are seen using -6 sec, -3 sec, 0 sec 1 sec, 3 sec or 6 sec as time lag on Ospøya 1 resp Ospøya 2
- 3) For westerly wind, we find that the coherence are gradually improving from 0 to 6 sec lag.
 - possibly due to the islands west of Ospøya. Wind along 250
 260 degrees is typically slowd down for one of the stations but not the other.

The Davenport model is rarely good at large separation distances. Other models are being tested, e.g. Krenk, and analysis methods are being scrutinized.

Measure masts: Midsund and Nautneset

