

Multistage grid investments incorporating uncertainty in Offshore wind deployment

Presentation by: Harald G. Svendsen

Joint work with: Martin Kristiansen, Magnus Korpås, and Stein-Erik Fleten

Content

- Transmission expansion planning model
- Incorporating uncertainty in offshore wind deployment
- North Sea 2030 case study

Background

Investment levels in renewables

Annual Investments by Region

Note: Total values include estimates for undisclosed deals. Includes corporate and government R&D, and spending for digital energy and energy storage projects (not reported in quarterly statistics).

Source: Bloomberg New Energy Finance

Quarterly Investments by Assets (ex. R&D)

Note: Total values include estimates for undisclosed deals. Excludes corporate and government R&D, and spending for digital energy and energy storage projects (reported in annual statistics only).

Source: Bloomberg New Energy Finance

Renewable energy resources

Mean wind speed [m/s]

Increasing demand for spatial and temporal flexibility North Seas Offshore Grid (NSOG)

WIRING UP EUROPE

A vast electricity grid under the North Sea would tap energy from future offshore wind farms and connect up the grids of European nations. The map shows one possible configuration.

Offshore nodes

A cluster of wind farms transmits a.c. to offshore converter stations, where it is stepped up to high-voltage direct current (HVDC) for transmission to shore.

Ref: www.nature.com

The transmission expansion planning model

Offshore grid – context

- The main drivers are **large-scale integration of non-dispatchable** power generation and multi-national **trade**
- We want a tool to identify good offshore grid layouts
 - Useful for strategic planning (TSO's / governments)
 - Proactive in terms of offshore wind integration
- Important aspects
 - Optimal minimize (socio-economic) costs
 - Robust not overly sensitive to small changes in parameters
 - Uncertainty underlying parameters might change
 - Energy policy national effects in terms of generation portfolio
 - Climate policy national effects in terms of emissions
 - Risk investors risk attitude

Our approach

- Linear optimisation
- Take into account:
 - Variability in renewable energy and prices/demand via time-series sampling
 - Different transmission technologies (cost categories)
 - <u>NEW</u>: Uncertain parameters via stochastic programming and scenarios
 - future: Power flow constraints (not yet)
- Considering:
 - Capacity investment costs in transmission (cables + power electronics + platforms)
 - Capacity investment costs in generation (per technology)
 - Market operation over sampled hours

9

PowerGIM

- PowerGIM = Power Grid Investment Module
 - A "proactive" expansion planning model
- Available as part of the open-source grid/market simulation package PowerGAMA
 - <u>https://bitbucket.org/harald_g_svendsen/powergama</u>
- Python-based, modelled with "Pyomo"
 - http://www.pyomo.org/
- Two-stage stochastic mixed-integer linear program (MILP)

Model formulation

In maths							
$\prod_{n} FSC + a \frac{8760}{ T } \sum \pi_s SSC_s$							
t. $FSC = \sum_{j \in B} (C_j^{fix} y_j + C_j^{var} x_j) + \sum_{n \in N} C^{node} y_n$							
$SSC_s = \sum_{i \in G} \sum_{t \in T} MC_i x_{its} + \sum_{n \in N} \sum_{t \in T} VOLL x_{nts}$							
$\sum_{i \in G_n} x_{ils} + \sum_{j \in B_n^{in}} x_{jls} (1 - l_j) - \sum_{j \in B_n^{out}} x_{jls} + x_{nls} = \sum_{l \in L_n} D_{lls}$	$\forall n \in N, t \in T, s \in S$						
$x_{nls} \le \sum_{l \in L_n} D_{lls}$	$\forall n \in N, t \in T, s \in S$						
$C_j^{fix} = B + B^d D_j + 2CL/CS$	$\forall j \in B$						
$C_j^{var} = B^{dp} D_j + 2CL^p / CS^p$	$\forall j \in B$						
$x_{ils}^{cur} = P_{ils}^{max} - x_{sil}$	$\forall i \in G, t \in T, s \in S$						
$P_{it}^{min} \le x_{its} \le P_{it}^{max}$	$\forall i \in G, t \in T, s \in S$						
$-(P_j^e + x_j) \le x_{jts} \le (P_j^e + x_j)$	$\forall j \in B, t \in T, s \in S$						
$x_j \le P_j^{n,max} y_j$	$\forall j \in B$						
$\sum_{i \in B_{-}} y_j \le M y_n$	$\forall n \in N$						
$x_j, x_{its}, x_{jts}, x_{nts} \ge 0, y_j \in Z^+, y_n \in \{0, 1\}$							

Expansion planning models

OPERATIONAL DETAIL

Figure: Jenkins, J., INFORMS, 2016.

Incorporating uncertainty

Two-stage optimization

• Basic idea:

- When making decisions, some parameters are unknown. The best decision takes into account the probability distribution of those parameters
- Use scenarios to represent probability distribution for uncertain parameters

Stochastic programming

• Two-stage problem:

- *x* = first stage variables (to decide now)
- ξ = uncertain data
- *Q* is the optimal value of the second stage problem:

```
egin{aligned} &\min_{y\in\mathbb{R}^m} & q(\xi)^Ty\ &	ext{subject to} & T(\xi)x+W(\xi)y=h(\xi)\ &y\geq 0 \end{aligned}
```

• *y* = second stage variable (to be decided in the future)

Scenario tree

() SINTEF **()** NTNU

Solution method: progressive hedging

• Stochastic program formulation (deterministic equivalent):

$$\min_{x} \sum_{s \in S} p_s f_s(x_s)$$
$$x_s \in C_s$$

• Relax non-anticipativity to get scenario-s problem formulation:

 $\min_{x_s} f_s(x_s)$ $x_s \in C_s$

• Add penalty for non-anticipativity

$$\min_{x_s} f_s(x_s) + \left[W^T x_s + \frac{\rho}{2} \left| |x_s - \hat{x}| \right|^2 \right]$$
$$x_s \in C_s$$

If 1st stage variables are binary, this expression can be linearized

Case study: North Sea 2030 – Energy Revolution (Vision 4)

Base case scenario

Base case scenario

Deterministic: Expected value

No uncertainty taken into account

But actual operating conditions will not be as expected

Deterministic: Robustness analysis

	S 1	S 2	S 3	S 4	Expected value	
EV solution	487.74	449.22	400.80	384.99	430.69	With EV solution
\rightarrow Investment costs	19.86	19.86	19.86	19.86	19.86	
Deterministic solution	484.70	447.70	400.11	383.29	428.95	With perfect foresight
\rightarrow Investment costs	12.66	14.85	19.19	19.19	19.86	
Value of information	3.04	1.53	0.68	1.70	1.74	

SINTEF

 \Box NTNU

Expected value of using the EV solution (EEV)

- The WS result might be difficult to interpretate since it contains a set of solutions (one per scenario)
- Tempting to use the EV scenario (only one solution)
- ...but the resulting decision is still exposed to future scenarios

• -> EEV:

$$EV = \min_{x} \quad Z(x, \overline{\xi}) \text{ where } \overline{\xi} = E(\xi)$$

 $EEV = E_{\xi}[Z(\bar{x}(\bar{\xi}),\xi)]$

€430.69 bn (EV €421.21 bn)

Stochastic: one investment stage

- €19.19 bn RP Uncertain offshore wind capacity taken into investments considered 1st stage
- Investment: 19.19 bn€ Total cost: 430.668 bn€

۲

٠

account

No second stage

compensating

Stochastic: two investment stages

Stage 1 investment: <u>Almost</u> the same as with only one investment stage

5 years later, when wind capacities are known

Expected total investment: 20.16 bn€

Expected value of perfect information (EVPI)

- The maximum amount that a system planner would be willing to pay for a "crystal ball"
- Benchmarks
 - Best available tool: a stochastic model (RP)
 - If she knew the future: deterministic solution of those scenarios (WS)
- The EVPI:

 $WS = E_{\xi}[\min_{x} Z(x,\xi)] = E_{\xi}[Z(\bar{x}(\xi),\xi)]$ $RP = \min_{x} \quad E_{\xi}Z(x,\xi)$ EVPI = RP - WS

€1.74 bn (0.40% of RP)

Value of stochastic solution (VSS)

- Your best deterministic approach that accounts for some uncertainty: EEV
- Your best alternative that "properly" incorporates uncertainty: RP
- ...which can be used to quantify the cost of ignoring uncertainty (equivalent to the VSS):

VSS = EEV - RP

€22.30 m (0.0052%)

Conclusions

- Deterministic solutions that copes with uncertainty might be hard to evaluate (many solutions) and/or give a cost-inefficient hedge against future scenarios
- Stochastic programs makes it possible to optimize one investment strategy that is cost-efficient against future scenarios (in contrast to EEV)
- Limitations of this study and related metrics (EVPI, EEV, VSS, and ROV)
 - The base case does already contain a strong grid infrastructure for 2030
 - Uncertainty is only represented through offshore wind capacity (wo/ exogenous curtailment cost)
 - A maximum amount of two investment stages limits the value of flexibility (ROV)
 - Last but not least; we use a model...
- "More is better" eliminate risk and enhance flexibility

Real option value (ROV)

- The value of flexibility
- Flexibility is represented with two investment stages
- The system planner can postpone investments in order to learn about the offshore wind deployment

€22.41 m (0.0054%)

(Equivalent to financial options)

