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Increasing variability and uncertainty lead to a growing complexity and present 
computational challenges for power system models

 Most power systems experience 
increasing share of variable and 
non-dispatchable generation in their 
energy mix

 Traditional power systems were 
primarily subject to power demand 
variations and fault occurrences

 Adequate models for both short-
and long-term planning become 
more complex

Rise of power systems underlying 
variability and uncertainty

 Determining investments in new 
transmission lines or reinforcements 
of the existing transmission network 
is a crucial task in power system 
planning

 Long-term and capital intensive 
decisions having a long-lasting 
effect on expected market prices 
and power system operation

Crucial task of Transmission 
Expansion Planning (TEP)

 European Union pursuing a fully 
integrated internal energy market in 
which energy can flow freely across 
its regions

 Robust transmission and distribution 
infrastructure, well-interconnected 
European network key constituents 
of a successful integration of 
renewables

 Spatial levelling effects of 
fluctuating renewable energy 
resources (incl. offshore wind) make 
grid reinforcements attractive

Relevance of TEP 
in European context

Recent developments make efficient  solutions of long-term TEP problems even more necessary,
but at the same time increase their complexity
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One approach of dealing with computational challenges is to reduce the dimension 
of the input data through finding representative samples
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Sampled input data

Dimension 
reduction

of full data 
set

How to reduce the dimension, or how to identify the most 
representative sample of the original time series data??
How well do dimension reduction techniques work in 
terms of both sample and model-dependent result ??
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5 different sampling & clustering techniques are employed for the dimension reduct-
ion – 2 scaling options & heuristic yield 4 variants for each technique & sample size
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Dimension 
reduction

of full data 
set

k-means 
clustering

 Data-partitioning clustering approach
 Subset centroid mean of all 

measurements

k-medoids
clustering

 Approach very similar to k-means
 Centroids are actual data points 

(medoid) of the subset

Hierarchical
clustering

 Agglomerative form of hierarchical 
clustering analysis

 Ward’s linkage (minimum variance)

Moment-
matching

 Sample selection through minimizing  a 
predetermined criterion

 Correlation, mean, standard deviation

Dimension reduction techniques:

Systematic
Sampling

 Selects every k element, k depends on 
sample size and #observations

 Straight-forward but efficient method

th

Two scaling options:

Technology-
specific scaling

Scaling by the 
highest occurring value

21

Heuristic:

Moving average heuristic is included as a further 
variant to capture extreme values (after sampling)
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Long-term Transmission Expansion Planning model (PowerGIM) is used for a North 
Sea offshore grid case study to assess the sampled and clustered input data

Long-term TEP model (“PowerGIM”)

 Two-stage stochastic program (MILP) co-optimizing 
investment decisions and market operation in a power 
system consisting of several market areas

 Integer variables used to make transmission 
infrastructure investment decisions  (first-stage)

 Linear program (LP) reflecting generator capacity 
investment and market operation (second-stage)

Case study

 Offshore grid expansion in the North Sea region

 2030 scenario based on ENTSO-E’s Vision 4

 Investment options include combined HVAC and 
HVDC grids (both radial- and meshed structures)

 Considered market areas are Norway, Great Britain, 
Denmark, Belgium, Germany and the Netherlands

 Economic investment lifetime 30 a, 5% discount rate

 CO2-price of 30 €/tCO2 is assumed

Premise

 Static, deterministic version of stochastic MILP is used 
for comparison study

 Inter-temporal constraints are not taken into account 
by the model (e.g. storage continuity of hydro 
reservoirs) - allows for an easier sampling of the input 
data since the chronological order of occurrence can 
be omitted

Mathematical formulation
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The effect of using the two different scaling options can clearly be seen in the 
resulting sampling and clustering results

Load in market area DE
contains the highest occurring value across

Scaling option 2 results in a closer fit of the 
reference load profile than scaling option 1

Scaling option 1
produces a better 

match for the 
offshore wind profile
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1.00

For almost all techniques, the average load levels tend to be higher than in the 
reference case – heuristic can partly capture extreme values
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Based on the average normalized root-mean-square error, it stands to reason that k-
means also yields the most accurate long-term TEP model results

sys
te

mati
c_

43
80

km
ea

ns
_4

38
0

km
ed

oid
s_

43
80

hie
ra

rch
ica

l_4
38

0

m
om

en
tM

at
ch

ing
_4

38
0

sys
te

mati
c_

21
90

km
ea

ns
_2

19
0

km
ed

oid
s_

21
90

hie
ra

rch
ica

l_2
19

0

m
om

en
tM

at
ch

ing
_2

19
0

sys
te

mati
c_

10
95

km
ea

ns
_1

09
5

km
ed

oid
s_

10
95

hie
ra

rch
ica

l_1
09

5

m
om

en
tM

at
ch

ing
_1

09
5

sy
ste

m
ati

c_
54

8

km
ea

ns
_5

48

km
ed

oid
s_

54
8

hie
ra

rch
ica

l_5
48

m
om

en
tM

atc
hin

g_
54

8

sy
ste

m
ati

c_
27

4

km
ea

ns
_2

74

km
ed

oid
s_

27
4

hie
ra

rch
ica

l_2
74

m
om

en
tM

atc
hin

g_
27

4

sy
ste

m
ati

c_
13

7

km
ea

ns
_1

37

km
ed

oid
s_

13
7

hie
ra

rch
ica

l_1
37

m
om

en
tM

atc
hin

g_
13

7

sy
ste

m
ati

c_
68

km
ea

ns
_6

8

km
ed

oid
s_

68

hie
rar

ch
ica

l_6
8

m
om

en
tM

atc
hin

g_
68

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

scaling option 1
scaling option 2
scaling option 1 with heuristic
scaling option 2 with heuristic

NRMSE suggests that k-means clustering 
performs best for all sample sizes,

particularly with scaling option 2 without 
the heuristic algorithm

Normalized Root-Mean-Square Error (NRMSE)
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Solution time significantly reduced - k-means clustering performance not persever-
ing for model-dependent results, Hierarchical and k-medoids show good accuracy

Systematic

k-means

k-medoids

Hierarchical

Moment-matching

4380 2190 1095 548 274 137 68

Reference (abs.)

17.83 5.69 2.11 1.03 0.36 0.17 0.09

23.11 5.75 2.14 0.86 0.62 0.21 0.11

21.23 6.94 2.26 1.05 0.46 0.25 0.09

20.52 6.74 2.33 1.16 0.44 0.16 0.09

23.47 5.67 2.40 0.83 0.40 0.20 0.10

2016.1 s

Average reduction in solution time per sample size
Solution time as share of full year reference in %

Total (obj.) Investment Operation

1.48 0.90 1.51

-1.46 -3.36 -1,34

0.70 -1.63 0.84

0.67 -0.23 0.72

1.35 2.32 1.29

473.1 bn€ 26.9 bn€ 446.1 bn€

Average cost accuracy
Deviation of full year reference in %

As expected, with decreasing sample size 
the average solution time can be significantly reduced

Although showing best NRMSE, 
k-means clustering exhibits poor 
performance when looking at 

investment and total cost deviations

Hierarchical clustering shows highest 
accuracy, followed by k-medoids
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Relative investment and operational cost deviations generally increase with reduced 
sample size
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k-means clustering shows consistent 
underestimation of operational costs

Scaling options seem to have bigger 
impact than heuristic, but no clear 

indication as to which performs better
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The convergence results of the relative objective value are in line with the previous 
findings

All techniques 
show relative 

values close to 1

Moment-matching 
technique displays strongly 
deviating behavior for small 

sample sizes
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Over-investments are mainly limited to one DC cable – under-investments do not 
occur for sample sizes bigger than 274 h
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Additional transmission capacity (NO-DK) is used to 
cover (higher sampled) loads more efficiently 

with cheap generation located elsewhere



17P. Härtel, Trondheim, January 19, 2017

Agenda

I Background and motivation

III Case study results

IV Conclusion

II Methodology



18P. Härtel, Trondheim, January 19, 2017

Conclusion

Agglomerative hierarchical and k-medoids clustering show comparatively good results
when quantifying both the NRMSE and the effects on offshore grid expansion decisions in the North Sea case study

Scaling options have a greater impact than the applied heuristic
but no clear indication can be given as to the more suitable choice of either one, careful attention to different scaling 
options for the original data set seems appropriate

Techniques performing well in the sampling process do not necessarily produce reliable results in the large-scale TEP model 
which became particularly evident for k-means clustering

Comprehensive comparison of dimension reduction techniques:

Future work:

Subsequent analysis of dimension reduction techniques 
can include the use of more sophisticated heuristics
particularly in investment models as they depend on 
highest occurring values

Ways of incorporating inter-temporal constraints to better 
capture medium-term dynamics and operational flexibility
either by employing dimension reduction approaches or 
developing alternative solution strategies involving 
decomposition for the full year problem
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Thank you very much for your attention!
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