SCALE MODEL OF MODULAR MULTILEVEL CONVERTER

Kjell Ljøkelsøy
MMC topology

- Halfbridge or fullbridge cells
- Many low voltage cells: (~300 per arm)
- Energy for several periods in cell capacitors
- Good AC voltage control. Small voltage steps.
- Redundancy
Why lab scale models?

- Many components, complex control.
 - Need for experience building.
- Testing on full scale systems not really feasible.
 - Potentially large consequences. Don't get access.
- Simulation models depends on model
 - Gives the answers you expect. Can miss unexpected aspects.
 - Assumptions and simplifications. May omit something important.
- Real converters contains most aspects.
 - Some adaptations and simplifications here too.

HVDC transmission link between France and Spain: HVDC Plus IGBT converter modules for 1000 MW. www.siemens.com/press".

3
Choice of scale. Power level:

• Full scale: 1000 MW
 • Essentially unmanageable.

• Low power model:
 • Safe. Low cost. Ease of operation.
 • Can behave quite different from full scale reference
 • High series resistances and auxiliary losses give deviations from reference case.

• High power model:
 • Low scaling ratios. Moderate scaling effects, properties close to full-scale reference.
 • Expensive to build. Expensive to run. Difficult and expensive to reconfigure.
 • Safety issues. Large damage potential. Careful planning required.

• Tradeoff: 60 kVA
 • Fits existing laboratory infrastructure.
Scale: Voltage level, etc.

- Depends on power level.

- Three main ranges:
 - < 50V: Considered to be safe. Used for low power models, <1 kW.
 - < 1000V: Governed by low voltage safety regulations
 - > 1000V. Governed by high voltage safety regulations Used for high power models, > 1MW

- Standard supply voltages preferred. 230V AC, 400V AC, 690V AC.
 - 400V AC chosen. Nominal grid voltage in lab.

- Most other parameters determined by power and voltage scaling.
 - Base impedance, Inductance, Capacitance, Transformer ratio.

- Some remaining parameters:
 - Cell number, control system topology.
Series resistance

- Difficult to scale. ESR tend to increase at low power.
- Gives additional damping of oscillations.

Noratet 3LT series transformers
Converter specifications

<table>
<thead>
<tr>
<th></th>
<th>Reference</th>
<th>18 Halfbridge</th>
<th>12 Fullbridge</th>
<th>6 Halfbridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
<td>1059 MVA</td>
<td>60 kVA</td>
<td>60 kVA</td>
<td>60 kVA</td>
</tr>
<tr>
<td>Rated DC voltage</td>
<td>640 kV DC</td>
<td>700V</td>
<td>700V</td>
<td>700V</td>
</tr>
<tr>
<td>Rated AC voltage</td>
<td>333 kV</td>
<td>400V</td>
<td>400V</td>
<td>400V</td>
</tr>
<tr>
<td>Rated AC current</td>
<td>1836 A</td>
<td>85 A</td>
<td>85 A</td>
<td>85 A</td>
</tr>
<tr>
<td>Cells per arm</td>
<td>400</td>
<td>18 Halfbridge</td>
<td>12 Fullbridge</td>
<td>6 Halfbridge</td>
</tr>
<tr>
<td>Nominal cell voltage</td>
<td>2 kV</td>
<td>50V</td>
<td>80V</td>
<td>160V</td>
</tr>
<tr>
<td>Arm inductance</td>
<td>50 mH</td>
<td>1.5 mH</td>
<td>1.5 mH</td>
<td>1.5 mH</td>
</tr>
<tr>
<td>Cell capacitance</td>
<td>10 mF</td>
<td>20 mF</td>
<td>15 mF</td>
<td>7.5 mF</td>
</tr>
<tr>
<td>Number of halfbridges</td>
<td>2400</td>
<td>108</td>
<td>144</td>
<td>36</td>
</tr>
</tbody>
</table>
Power cell board

- Common PCB for all variants
 - 50V, 80V 160V, variants
 - Two independent halfbridges,
 - Copper rails for half or fullbridge configuration.

- Low ESR design
 - Thick copper planes in board.
 - Multiple small, low ESR electrolytic capacitors.

- Power circuit domain functions.
 - Transistor drivers, protection and interlock circuits.
 - Generic control signal interface.
 - Voltage and temperature measurements
Power transistors

- Scaled cell voltage drop: 100mV
 - MOSFETS, not IGBTs
- 5x parallel MOSFETs
 - 50 and 80V variant: 150V, 5 mOhm => ESR: 1 mOhm
 - 160V variant: 250V, 15 mOhm => ESR 3 mOhm
 - MOSFETs types with enhanced body diodes required.
- Switching is fast:
 - Diode reverse recovery snapoff: 20 ns.
 - Little margin for overvoltage transients.
 - Board layout extremely critical.
- Short circuit protection
 - Monitors forward conduction voltage. Trips at 0.8V => 700A

Diode turn off. 5 mm unsymmetry. Ch1, Ch3: uds, Ch4, R1: Id
Control tasks

• Internal
 • Synchronisation of nodes.
 • Protection and state monitoring. Converter fault handling.
 • Cell voltage balancing (within an arm)
 • Arm voltage control (energy balance)
 • Circulating current control

• External
 • Phase current control
 • Active power control/DC voltage control.
 • Reactive power control/ AC voltage control
 • AC phase lock/ Frequency control/ Virtual inertia
 • Harmonic suppression, damping.
 • Grid fault handling, current limiting.
System structure

- Hierarchy:
 - Power cell board
 - Group control board
 - Converter control board
 - Central control unit

- Optical fiber link
 - 3.75 Gbit/s
 - Chain topology

- Operation modes
 - Normal operation.
 - Development mode. Low level control signals
 - Control algorithms on external unit: OPAL-RT
 - Programming in Matlab/Simulink
Control electronics

• **Group control board.**
 • Based on Xilinx Artix FPGA
 • Governs 3-4 power cell boards
 • Gathers measurements.
 • Distributes 24V supply to drivers.
 • Generates, distributes driver signals.

• **Converter control board.**
 • Designed as general purpose converter control board
 • Based on PicoZed7030 module.
 • Xilinx Zynq 7030 FPGA with ARM A9 processor.
 • 8x 40 MSPS AD converter allows oversampling.
 • Handles converter control and protection functions.
Power cell group module

- 19" subrack 6U height
 - Group control board
 - 3-4 power cell boards: 6 or 8 halfbridges, 4 fullbridges
- All connections at front.
- Power cell modules in front and back of cabinets
- Vertical boards: Convective airflow
 - No fans. Fans may be required in 6 level converter.
19" cabinet

- 18 level halfbridge converter.
- Half filled cabinet: One phase
 - Two phases back to back.
 - Three modules per arm,
 - Two arms per phase.
- Large amount of capacitors.
 - 648 capacitor cans for 18 cell converter.
Complete 12 level fullbridge converter

- Cabinet 1:
 - Switchgear,
 - Arm inductors,
 - Control electronics,
 - Power cells phase A,B

- Cabinet 2:
 - 2: Power cells phase A,B.

- Equal layout for 18 cell halfbridge converter

- Single cabinet for 6 cell fullbridge converter
Single phase test

- Test of 18 level halfbridge converter
 - Open loop, no current control
 - Cell voltage sorting selects to be on or off
 - 100% modulation
 - Single phase RL load
 - Center tap DC capacitor bank

- Waveforms equal to simulations
 - Distorted arm current due to capacitor charging/discharging.

Ch1: Arm current, Ch2, Ch3: Arm voltages, Ch4: Phase current.
It works!
Teknologi for et bedre samfunn