The C-Tower Project A Composite Tower for Offshore Wind Turbines

18 January 2017, Deepwind Trondheim, Norway

<u>Tjeerd van der Zee (WMC)</u> Marten Jan de Ruiter (WMC) Ivo Wieling (Jules Dock Composites)

© Copyriah

Contents

- Project introduction
- Deciding on a tower concept
- Flexible composite tower
- Manufacturing
- Conclusions and next phase

Copyriah

Project introduction

© Copyright

WMC 2015

Project introduction

Photo: Rob Faulkner

© Copyright

WMC 2015

?

Project partners

- Wind2020: co-ordination
- Jules Dock Composites: production expertise
- WMC: composite and tower design knowledge, design and analysis tools, material and full-scale testing

WMC

Knowledge Centre

WMC 2015

INNOVATION | DEVELOPMENT | COMPOSITES

Pros and cons of composite tower

- Weight reduction compared to steel
 - Lower installation costs
- Material may better dampen vibrations
- Opportunities for increasing lifetime
- But:
 - Complex production
 - Reduced stiffness (frequency issues)
 - End-of-life not clear
 - New technology market is conservative

Project challenge

Design a composite offshore wind turbine tower which is:

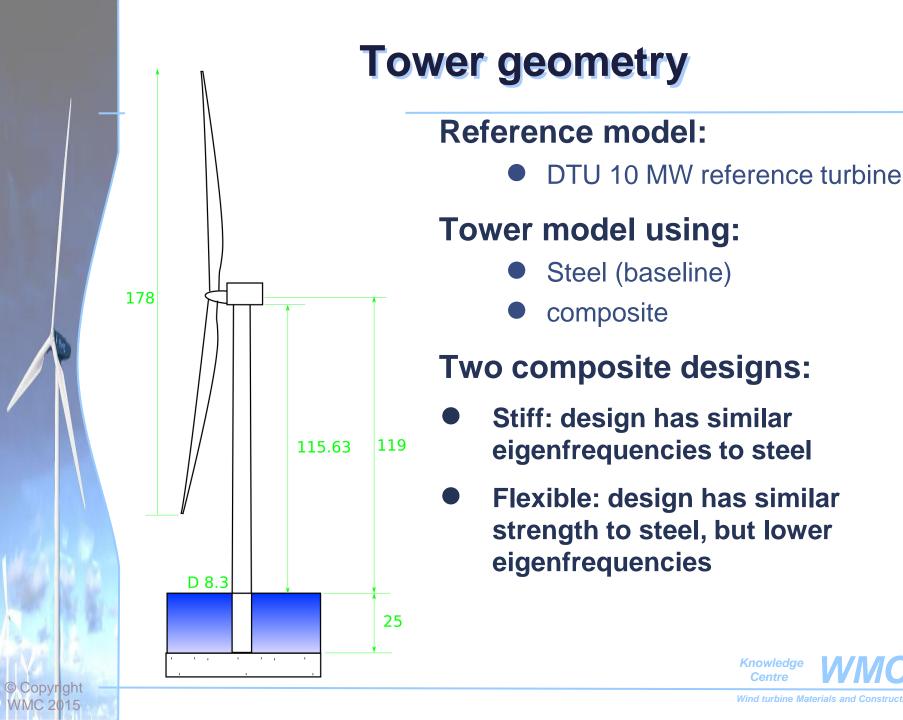
lighter

Copyriah

- more flexible but as strong
- more sustainable
- with better damping characteristics

Project goals

Design a composite offshore wind turbine tower to carry a 10 MW turbine


Uses a steel monopile

WMC 2015

- Show by software analysis that the concept is feasible (strength and fatigue life)
- Select production techniques for such a design
- Build a (roughly) 1:10-scale prototype and test it

Knowledge

Knowledge Centre

Eigenfrequencies

	1P	3P
Option 1: between 1P and 3P		
Option 2: eigenfrequencies around 1P frequeny [Hz] 0	0.1 0.2	0.3
	Stiff	Flexible
Top thickness (D 5.5m)	200 mm	10 mm
Bottom thickness (D 80m)	450 mm	32 mm
Tower weight	1191 ton	92 ton
1 st frequency	0.199 Hz	0.065 Hz
2 nd frequency	Not relevant	0.217 Hz
Maximum stress	168.7 MPa	330.2 MPa
Buckling SF	47.4	<< 1

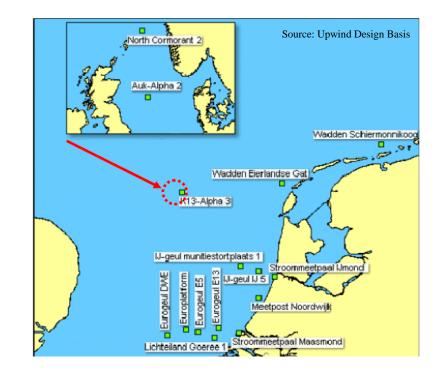
© Copyright

Optimization

Constraints:

WMC 2015

- 1st side-to-side frequency: below 1P range
- 2nd side-to-side frequency: over 3P range
- Idem fore-aft frequencies
- Buckling safety factor > 1
- Stresses below critical value


• Target: Minimization of tower mass

Environmental conditions

- K13 North Sea location
- 25 m water depth
 - Load cases defined according to IEC 61400-3

© Copyright

Ultimate strength analysis

- Extreme load cases selected
- Parameters in optimization run
 - Wall thickness distribution
 - Fibre orientation

- Relative thickness of layers
- Full FEM assessment at end of optimization loop
- Result: for a glass fibre reinforced epoxy stresses are below critical values

Fatigue analysis

 Wind-wave directionality plays role in tower loading

- More aerodynamic damping by rotor for the tower motions when wave direction is aligned with wind
- Results in large amount of load cases to consider

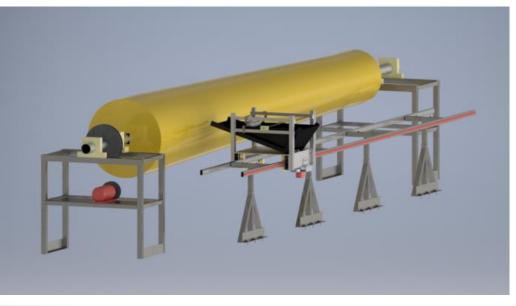
Slightly reduced set

- Maximum of 3 combinations of wave period and wave height per wind speed bin
- 1824 load cases in total

Fatigue analysis

- Values for Ultimate Tensile Strength (UTS) and Ultimate Compressive Strength (UCS) assumed
- Fatigue Reserve Factors determined at locations at 4 m intervals throughout tower
- 20 year fatigue lifetime possible with UTS = 132.7 MPa; UCS = 92.9 MPa
- All safety factors according to GL Guidelines taken into account

NMC 2015


Knowledge

Manufacturing

Filament winding:

Copyriah

- Automation possible
- Consistent and highly controllable
- Angles close to 0 degrees

Manufacturing

Machine for manufacturing scale model being built now

© Copyright

WMC 2015

Knowledge Centre

Conclusions so far

Calculations show that flexible composite tower is feasible

- 34% mass reduction compared to steel baseline tower
- Tower top deflection of less than 3 degrees


 For a real competitive design, an integrated approach including substructure and control strategy is required

Next phase

Completion of filament winding machine

Material testing on small test coupons

- Production of the scaled model
- Testing of the scaled model at WMC

© Copyriat

WMC 2015

Thank you for your attention

Questions?

This research is financially supported by TKI Wind op Zee

Knowledge Centre

Copyriah

WMC 2015

INNOVATION | DEVELOPMENT | COMPOSITES

