EERA DeepWind'2017, JAN. 18, 2017, Norway

EERA DeepWind'2017 14th Deep Sea Offshore Wind R&D Conference, Trondheim, 18 - 20 January 2017

Development of a 12MW Floating Offshore Wind Turbine

Hyunkyoung SHIN

School of Naval Architecture & Ocean Engineering, University of Ulsan, Korea EERA DeepWind'2017, JAN. 18, 2017, Trondheim, Norway

Outline

- Introduction
- UOU 12MW FOWT model
- Modified Control System
- Numerical Simulation
- Design Load Cases
- Novel Offshore Floater
- Conclusion

1. Introduction

Growth in Size of Wind Turbine

> Turbines have grown larger and taller to maximize energy capture

Source : http://www.sbcenergyinstitute.com/Publications/Wind

Critical Needs for FOWTs - Responsible and Sustainable Ocean Economy 2030 -

Total change in GVA Compound annual growth rate for Total change in employment Industry GVA between 2010 and 2030 between 2010 and 2030 between 2010 and 2030 152% Industrial marine aquaculture 5.69% 303% Industrial capture fisheries 4.10% 223% 94% Industrial fish processing 6.26% 337% 206% Maritime and coastal tourism 3.51% 199% 122% Offshore oil and gas 1.17% 126% 126% Offshore wind 24.52% 8 0 3 7 % 1 257% Port activities 4.58% 245% 245% Shipbuilding and repair 2.93% 178% 124% 2.93% Maritime equipment 178% 124% 1.80% 143% 130% Shipping Average of total 3.45% 197% 130% ocean-based industries Global economy between 3.64% 204% 120%1 2010 and 2030

1. Based on projections of the global workforce, extrapolated with the UN medium fertility rate.

Source: Authors' calculations based on OECD STAN, UNIDO INDSTAT, UNSD; Lloyd's Register Group (2014; 2013); World Bank (2013); IEA (2014); FAO (2015).

Why do we need FOWT ?

Objective (Motive)

≻ Why ?

- ✓ Enlargement in size & capacity considering LCOE
- ✓ Needs for innovative Floating Offshore Wind Turbines
- ✓ Light through darkness

≻ How ?

- \checkmark Novel offshore floater without mooring lines
- ✓ To reduce the Tophead mass
- \checkmark SCSG, Flexible Composite Shaft, Carbon Sparcap

Reason why we use a superconducting generator

The heavy top head causes the high mechanical stress and high cost of foundation and tower.

Suggestion of a new technology for the 12 MW

Modularized generator for the 12MW

The modularization of the generator enables a smaller cryogenic volume, an easier repair, assembly, and maintenance of the HTS field coil. Modularization will be suitable for commercial mass production and will increase the operational availability of HTS generators in the wind

turbine.

산대학교 공과대학 : 서해양공하브

Detailed design for composite flexible shaft

Analysis for ultimate & fatigue strength

12

Total Mass : 51.86 ton

	M.S.
Glass composite shaft	0.22 (First-ply failure)
Carbon composite pad-up	0.56 (First-ply failure)
Metal flanged part	0.88 (Von-mises stress)
Global buckling	46.2

Source : Korea Institute of Materials Science(KIMS)

Detailed design for new support structure

Bending load case

Case	My (MNm)	Mz (MNm)
1	-37.69	4.68
2	66.55	5.13
3	-2.40	-44.09
4	-6.10	47.32

Source : Korea Institute of Materials Science(KIMS)

UOU 12MW Wind Turbine Model

15

UU

약끄

Design Summary

Rating	5 MW 12 MW	
Rotor Orientation	Upwind, 3 Blades	Upwind, 3 Blades
Control	Variable Speed, Collective Pitch	Variable Speed, Collective Pitch
Drivetrain	High Speed, Multiple-Stage Gearbox	Low Speed, Direct Drive (SCSG)
Rotor, Hub Diameter	126 m, 3 m	195.2 m, 4.64 m
Hub Height	90 m	124.6 m
Cut-In, Rated, Cut-Out Wind Speed	3 m/s, 11.4 m/s, 25 m/s	3 m/s, 11.2 m/s, 25 m/s
Cut-In, Rated Rotor Speed	6.9 rpm, 12.1 rpm	3.03 rpm, 8.25 rpm
Overhang, Shaft Tilt, Pre-cone	5 m, 5°, 2.5°	7.78 m, 5°, 3°
Rotor Mass	110,000 kg	297,660 kg
Nacelle Mass	240,000 kg	400,000 kg (<i>Target</i>)
Tower Mass (for offshore)	249,718 kg	782,096 kg

2. UOU 12MW FOWT Model

Scaling Laws for 12MW power production

•
$$P = C_p * \frac{1}{2} \rho A V^3$$

• Scale ratio =
$$\lambda = \sqrt{\frac{12MW}{5MW}} = 1.549$$

Blade length : NREL 5MW(61.5m) -> UOU 12MW(95.28 m)

Source : EWEA, Wind energy—the facts: a guide to the technology, economics and future of wind power, 2009.

12MW Carbon blades

- 61.5 (m) 5MW glass blade : 17.7 ton \geq
 - \rightarrow 95.28 (m) 12MW glass blade : 62.6 ton (Too heavy)
 - \rightarrow 95.28 (m) 12MW carbon (sparcap) blade : 42.7 ton

Sparcap (43% of the total weight – 5MW class IIA)

	0 ^o Stiffness [Gpa]	Density [kg/m³]	Blade Weight [ton]	Center of Gravity [m]
CFRP	130	1572	42.7 (Carbon Sparcap)	31.8
GFRP	41.5	1920	62.6	31.8
Source : Korea Institute of Materials Science(KIMS)				

N.F. [Hz]	1 st Flapwise	2 nd Flapwise	1 st Edgewise	2 nd Edgewise
12MW Blade	0.5770	1.6254	0.8920	3.2676

18

Scale-up blade properties(deflection) •

How the blade compares to existing ones

Hub height

- > Nacelle target mass: 400 ton, Hub mass: 169.4 ton (scale-up)
- > Hub height :

Rotor radius + Extreme wave height (half) with 50-year occurrence \times S.F. of 1.8 \rightarrow 97.6 + 30.0 / 2 \times 1.8 = 124.6 m

Source : Statoil - hywind (Statoil.com)

Source : http://www.ramboll.com/media/rgr/worlds-largest-turbine-installed

Scale-up tower properties

- Scale up using offshore tower from OC4 definition(5MW : Height : 78.2 m , Weight : 249.718 ton)
- 12MW "Material : steel, Height : 110.88 m, Weight : 782.096 ton (scale-up)"
 [cf. UPWIND report 2011 : 983 ton (10MW), 2,780 ton (20MW)]

Beam deflection

$$\delta = \frac{TL^3}{3EI} \qquad \frac{\delta_{12}}{\delta_5} = \frac{L_{12}}{L_5} \qquad \frac{T_{12}}{T_5} = \frac{12 \text{ MW}}{5 \text{ MW}}$$
$$\frac{EI_{12}}{EI_5} = \frac{12L_{12}^2}{5L_5^2} \qquad T = C_t * \frac{1}{2}\rho AV^2$$

• Scale-up tower properties

$$\frac{EI_{12}}{EI_5} = \frac{12L_{12}^2}{5L_5^2}$$
(Beam deflection)

Scale-up platform properties

3. Modified Control System

Wind Turbine Power Curve

Source : https://www.e-education.psu.edu/aersp583/node/470

Maximum Cp and Optimal TSR(Tip Speed Ratio)

난대학교 공과대학

\succ	Modification	of the	Aerolwst	:-0.275°

Node	Rnodes	AeroTwst	DRNodes	Chord	Airfoil Table
[-]	[m]	[°]	[m]	[m]	[-]
1	4.437	13.033	4.234	5.487	Cylinder1.dat
2	8.672	13.033	4.234	5.971	Cylinder1.dat
3	12.906	13.033	4.234	6.456	Cylinder2.dat
4	18.199	13.033	6.352	7.060	DU40_A17.dat
5	24.551	11.205	6.352	7.207	DU35_A17.dat
6	30.902	9.887	6.352	6.906	DU35_A17.dat
7	37.254	8.736	6.352	6.583	DU30_A17.dat
8	43.606	7.520	6.352	6.208	DU25_A17.dat
9	49.958	6.269	6.352	5.806	DU25_A17.dat
10	56.309	5.086	6.352	5.425	DU21_A17.dat
11	62.661	3.913	6.352	5.044	DU21_A17.dat
12	69.013	2.850	6.352	4.663	NC64_A17.dat
13	75.364	2.044	6.352	4.282	NC64_A17.dat
14	81.716	1.251	6.352	3.901	NC64_A17.dat
15	87.009	0.588	4.234	3.583	NC64_A17.dat
16	91.243	0.095	4.234	3.232	NC64_A17.dat
17	95.478	-0.169	4.234	2.198	NC64_A17.dat

Aerodynamic properties

26

Torque Scheduling for 12MW

^{물산대학교 공과대학} 조선해양공학부

 $\approx 8.003 \times 0.99$

Simulation Study(Pitch gain-tuned)

Simulation Study(Pitch gain-tuned Controller)

산대학교 공과대학 도**선 해야고** 5

Steady state analysis

Campbell diagram (3P Issue)

Tower resonance → Need to redesign tower properties

31

Natural frequency of the tower

Campbell diagram(after)

Tower Length (to avoid 3P!!) 110.88 m \rightarrow 106.53 m (<u>-4.35m</u>)

4. Numerical Simulation

Design process for a floating offshore wind turbine

35

Flow Diagram of UOU + FAST v8

문 ^{물산대학교 공과대학} 조선해양공학부

UOU in-house code

> Hydrodynamic coefficients need for numerical simulation in hydro part

• UOU in-house code

3D panel method(BEM) Element : 1024

<u>Output</u>

- 1. Added mass coefficients
- 2. Radiation Damping coefficients
- 3. Wave Excitation Forces/Moments

12MW Stability analysis

	Floating Platform Geometry	5MW	12MW
	Elevation of main column above SWL	10	10
	Elevation of offset columns above SWL	12	16.215
	Spacing between offset columns	50	67.562
	Length of upper columns	26	35.132
	Length of base columns	6	8.107
	Depth to top of base columns below SWL	14	18.917
	Diameter of main column	6.5	9.634
	Diameter of offset (upper) columns	12	16.130
	Diameter of base columns	24	32.260
Wave direction	Diameter of pontoons and cross braces	1.6	2.162
Transvorso Stability (Poll)	Longitudinal Stability (Ditch)	

울산대학교 공과대학 조선해양공한부

Longitudinal Stability (Pitch)

RAO results in regular wave

39

5. Design Load Cases(DLCs)

Design Load Cases

IEC61400-3 : International Standards

DLC	Significant Wave height	Peak Period	Wind Model	Prelimina
DLC1.1 (NSS)	3.2 m	9.6 s	NTM	for ultima - DLC1.1
DLC1.3 (NSS)	3.2 m	9.6 s	ETM	- DLC1.3 - DLC1.6
DLC1.6 (SSS)	9.72 m	13.98 s	NTM	- DLC6.1
DLC6.1 (ESS)	11.32 m	15.1 s	EWM50	

iry study ate strength analysis

- C

DLC1.1(NSS/NTM)

Normal Sea State : $H_s = 3.2 \text{ m} / T_p = 9.6 \text{ s}$ Normal Turbulence Model : $I_{ref} =$

DLC1.3(NSS/ETM)

Normal Sea State : $H_s = 3.2m / T_p = 9.6s$ Extreme Turbulence Model : $I_{ref} = 0.14(B)$

DLC1.6(SSS/NTM)

Severe Sea State : $H_s = 9.72 \text{ m} / T_p = 13.98 \text{ s}$ Normal Turbulence Model : $I_{ref} = 0.14(B)$

DLC6.1(ESS/EWM50)

Extreme Sea State : $H_s = 11.32 \text{ m} / T_p = 15.1 \text{ s}$ Extreme Wind Speed Model : $I_{ref} = 0.14(B)$

Summary

	Maximum	Units	DLC
Rotpwr	15,600.00	kW	DLC 1.6 (17 m/s)
GenPwr	15,370.00	kW	DLC 1.6 (17 m/s)
RotSpeed	10.56	rpm	DLC 1.6 (17 m/s)
OoPDefl1	14.33	m	DLC 1.3 (11 m/s)
TTDspFA	1.34	m	DLC 1.6 (11 m/s)
TTDspSS	0.88	m	DLC 6.1 (-30 deg)
TwrBsMyt	618,300.00	kNm	DLC 1.6 (11 m/s)
PtfmSurge	20.86	m	DLC 6.1 (+60 deg)
PtfmHeave	7.61	m	DLC 1.6 (3 m/s)
PtfmPitch	6.17	deg	DLC 1.6 (11.2 m/s)

Long-term distribution

- IEC61400-1 Annex F
 - Statistical extrapolation of loads for ultimate strength analysis ۰

Extrapolation of in-plane tip deflection

47

5. Novel Offshore Floater

Wave Energy Propulsion

Wave Energy Propulsion

Wave Energy Propulsion

^{울산대학교 공과대학} 조선해양공학부

Passive/Active mode

Novel Stationkeeping(passive mode)

53

6. Conclusion

Conclusion

- Preliminary design of a UOU 12MW floating offshore wind turbine is made by being scaled up from NREL 5MW wind turbine and OC4 semi-submersible.
- An innovative floater without mooring systems for the UOU 12MW FOWT is suggested.
- In order to reduce the top head mass, SCSG, Flexible shaft and CFRP blades are adopted in UOU 12MW FOWT.
- To avoid the negative damping of FOWTs, controller was modified.
- Tower length was changed to avoid the 3P excitation.
- Long term analysis of the UOU 12MW FOWT was performed.
- Later, IEC61400-3-2 rule should be considered for the UOU 12MW FOWT.

EERA DeepWind'2017, JAN. 18, 2017, Norway

EERA DeepWind'2017 14th Deep Sea Offshore Wind R&D Conference, Trondheim, 18 - 20 January 2017

THANK YOU!

ACKNOWLEDGMENTS

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20154030200970 and No. 20142020103560).

