Floating vertical-axis wind turbines

Comparison of two numerical tools for integrated dynamic analysis

Boy Koppenol¹, Zhengshun Cheng², Zhen Gao², Carlos Simão Ferreira³, Torgeir Moan²

¹ Ventolines BV, The Netherlands

² Norwegian University of Science and Technology

³ Technical University of Delft

Norwegian University of Science and Technology

Introduction

- 2 Numerical tools
- 3 Methodology
- 4 Results
- 5 Summary

1. Introduction: Floating VAWTs

- Floating wind turbines
- Vertical-axis wind turbines
 - Simple design
 - Insensitive to wind direction
 - Low machinery position

• VAWT characteristics

- Dynamic inflow conditions
- Blade meets flow twice
- Encounters own wake

2 Numerical tools

3 Methodology

4 Results

5 Summary

1. Introduction: Aim / Scope

VAWTs are different

- Aerodynamics
- Load transfer to support structure
- New simulation tools
- Code-to-code comparison
 - Modeling differences
 - Focus on implementation aerodynamics
 - Coupled analyses using a floating spar VAWT

2. Numerical tools: **Overview**

Current publicly available tools

- **FIoVAWT** 1 Cranfield University
- CALHYPSO EDF R&D 2
- 3. OWENS toolkit Sandia National Laboratories
- HAWC2 4
- SIMO-RIFLEX-DMS 5
- SIMO-RIFLEX-AC 6.
- **DTU Wind Energy**
- NTNU/Marintek
 - NTNU/Marintek

3 Methodology

Delft

4 Results

5 Summary

3 Methodology

4 Results

5 Summary

Delft

2. Numerical tools: Aerodynamics

Based on AC flow theory

- 1. Section rotor in ACs
- 2. Loads from blade element theory
- 3. Blade loads as body forces on the AC
- 4. Solve pressure field for velocities

Additions in SIMO-RIFLEX-AC

- Local blade inclination
- ✓ Tangential terms
- Correction factor

1 Introduction 2 Numerical tools 3 Methodology

4 Results

5 Summary

3. Methodology: Two cases

1. Aerodynamic modeling

- Rigid land-based VAWT
- 5MW DeepWind rotor
- Steady wind-only at 8, 14 and 20 m/s

2. Fully coupled analyses

- Spar VAWT
- Platform from OC3-Hywind
- Turbulent wind and irregular waves

4. Results: Aerodynamic modeling

Rotor-averaged thrust

- Similar at high wind speeds
- C_T different at 8 m/s

- 1 Introduction
 2 Numerical tools
 3 Methodology
 4 Results
- 5 Summary

• Aerodynamic torque 8 m/s

- 2P effect, troughs and peaks
 - Tangential terms
- Induced velocity

4. Results: Coupled analyses

Platform response

- Larger offsets in HAWC2
- Surge-heave coupling
- Yaw in 1P and 2P

Introduction
 Numerical tools
 Methodology
 <u>A Results</u>

5 Summary

4. Results: Coupled analyses

Mooring line tension

- 1P yaw in SIMO-RIFLEX-AC
- Mooring line (hydro)dynamics

2 Numerical tools 3 Methodology

5 Summary

ŤUDelft

4. Results: Coupled analyses

- Tower base bending
 - Dominated by 2P excitation
 - Pitch response
 - Wave contribution
 - Tower mode (0.35 Hz)

1 Introduction
 2 Numerical tools
 3 Methodology
 4 Results

Delft

5 Summary

5. Summary

Vertical axis wind turbines

- Benefits for floating applications
- Complex aerodynamics

Aerodynamic modeling

- AC flow theory
- Implementation important at low wind speeds

Fully coupled analyses

- Mooring line dynamics
- Wave contribution
- Tower mode

5 Summarv

Boy Koppenol

Project engineer

E: boykoppenol@gmail.com *T:* +31 649 828 765

Ventolines BV, The Netherlands www.ventolines.nl