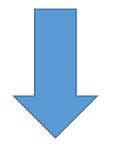


Can a Wind Turbine Learn to Operate Itself? Evaluation of the potential of a heuristic, data-driven self-optimizing control system for a 5MW offshore wind turbine

Stefan G IORDANOV <u>Maurizio COLLU</u> Yi CAO

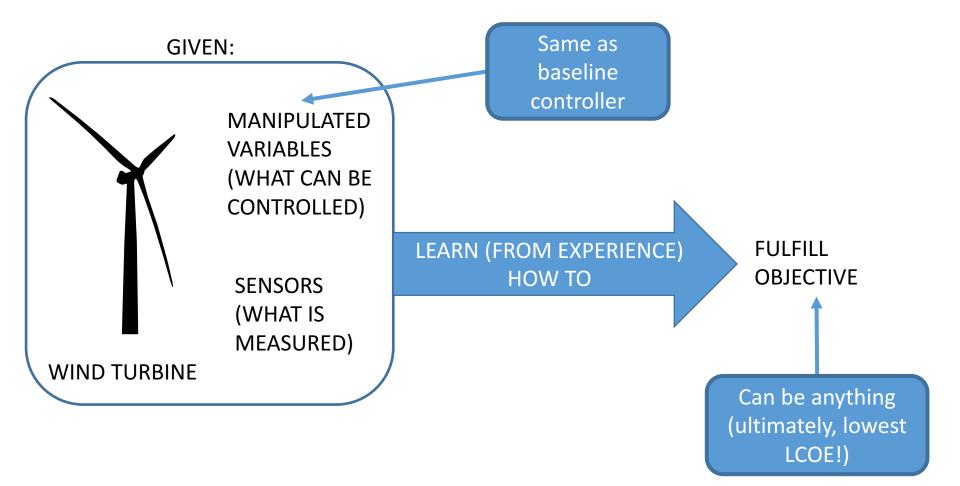

18 January 2017, EERA DeepWind '2017 Trondheim, Norway

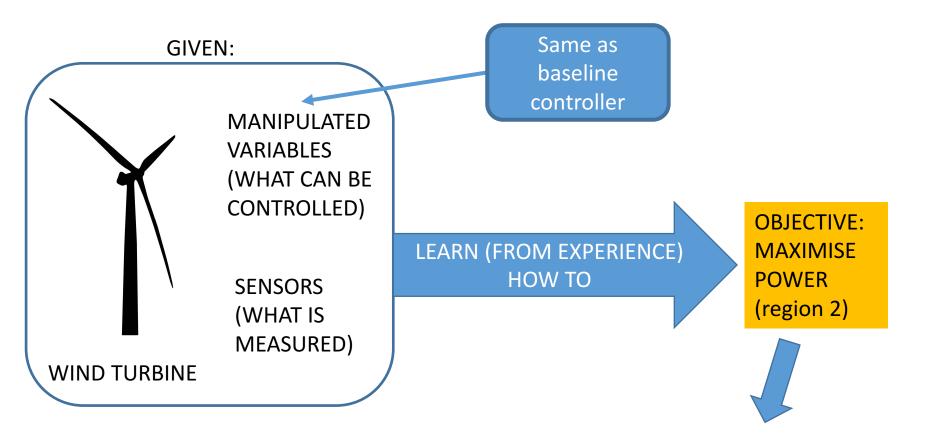
www.cranfield.ac.uk

Context & problem statement

- Larger wind turbines, more complex loads
- Larger wind farms, more complex interactions
- Large amount of real-time data from monitoring system, only used for monitoring

- Substantially benefit from more advanced control strategies
- BUT performance VS reliability

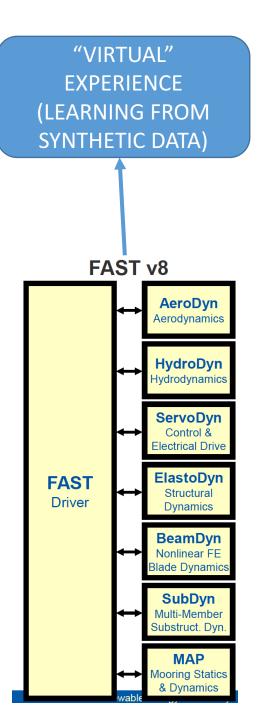

MHI Vestas V164-8.0MW [http://www.mhivestasoffshore.com/innovations/]


SIEMENS SWT-8.0-154 [http://www.siemens.com/global/en/home/market s/wind/turbines/swt-8-0-154.html]

Aim: can it learn from experience the optimum control strategy?

Compare performance against baseline controller

Case study



LOAD CASES

Steady wind speed (no turbulence) (6 to 12 m/s)

Turbulent wind speed (6 to 12 m/s)

NREL 5MW offshore WT

Brief review

- SOC: defining functions of process variables such that, when held constant, optimal operation is achieved (Skogestad 2000)
- Cao (2014): model-free approach (no linearisation) \rightarrow global SOC
- Already proven at industrial level in the processing industry: oil reservoir waterflooding, 30% in Net Present Value

Methodology: gSOC

- Define objective function
 u = manipulated
 y = sensors
 d = disturbances
- The deviation is approximated as (deviation → 0 near opt)

$$J = \varphi(u, y, d)$$

$$J_{i+1} - J_i = \sum_{j=1}^{n_u} \frac{dJ}{du_j} (u_{i+1,j} - u_{i,j})$$

• Define controlled variables
$$(\theta = coefficients)$$

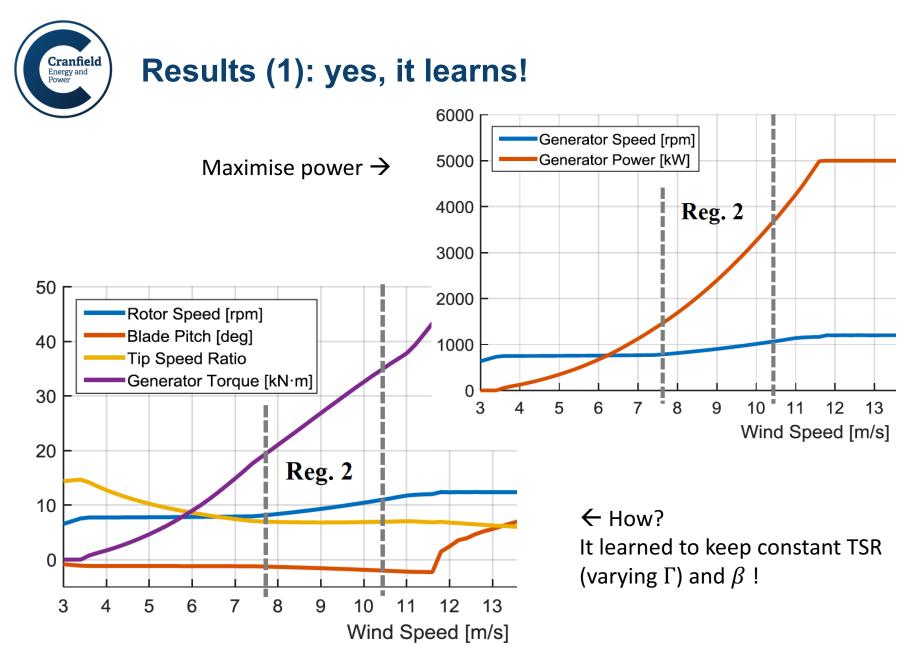
$$CV(y,\theta) = \frac{dJ}{du} = 0$$

$$min_{\theta} \sum_{i=1}^{N} \sum_{p=i_{1}}^{i_{k}} (J_{p} - J_{i} - \sum_{j=1}^{n_{u}} CV_{j}(y,\theta) (u_{p,j} - u_{i,j}))^{2}$$

Methodology: gSOC applied to Wind Turbine

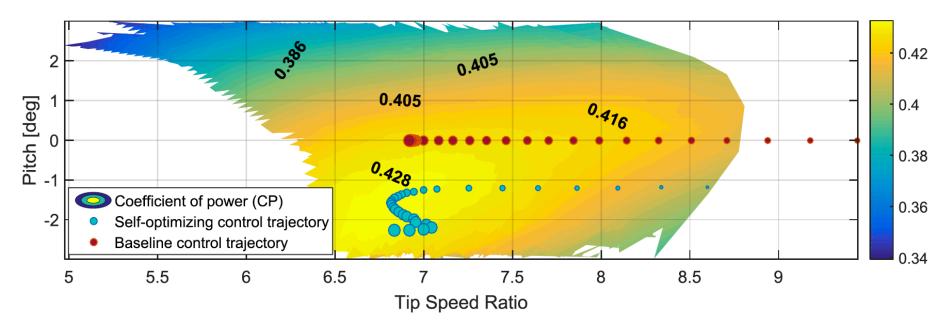
• Define *u*, *y*, *d*

$$u = [\Gamma, \beta], \quad y = [\Gamma, \beta, \omega_G, P], \quad d = [v]$$


 $P = \Gamma \cdot \omega_c \cdot \mathbf{n}$

- Define objective function
- Then, deviation is

$$P_{i+1} - P_i = \frac{dP}{d\Gamma} (\Gamma_{i+1} - \Gamma_i) + \frac{dP}{d\beta} (\beta_{i+1} - \beta_i)$$
$$\frac{dP}{d\Gamma} = CV_1 = \theta_0 + \theta_1 \cdot \omega_G + \theta_2 \cdot \Gamma$$
$$\frac{dP}{d\beta} = CV_2 = \theta_3 + \theta_4 \cdot \omega_G + \theta_5 \cdot \beta$$


• CVs

- For each disturbance value, build sample matrix [20 x 6] \rightarrow "experience"
 - 6 pitch angles
 - 20 generator torques
- Then θ_i obtained through regression ₈

Results (2): slightly better strategy

 \rightarrow gSOC tracks maximum CP better than baseline control \rightarrow learnt from experience

 \rightarrow Not a substantial advantage, but proving that can perform well as approach: use it to discover control approaches with more complex objectives

- The global self-optimising control strategy gSOC is able to deliver the same performance (in terms of energy extracted) as conventional control system
- Easy development and implementation, flexible, scalable
- → does not compromise reliability / ease of use when scaled up to consider:
 - More sensor signals
 - More actuators

- The "ideal" control strategy should (long-term vision):
 - minimise the Levelised Cost of Energy (LCoE) [cost/kWh]
 - taking into account all the data available
- Next steps: *discover new optimum control strategies*
 - Numerical → Include in the objective function "J" additional criteria, e.g.:
 - 1 p and 3p loads on the blades equivalent fatigue damage load
 - Loads at the tower base equivalent fatigue damage load
 - Multiple wind turbines
 - ...
 - Experimental \rightarrow small scale wind turbine tested in wind tunnel
 - Feedback to simple, non data-driven control strategies