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Context & problem statement

Larger wind turbines, more complex
loads

Larger wind farms, more complex
interactions

Large amount of real-time data from
monitoring system, only used for MHI Vestas V164-8.0MW
mon |t0 I'I n g [http://www.mhivestasoffshore.com/innovations/]

Substantially benefit from more
advanced control strategies

BUT performance VS reliability SIEMENS SW1.8.0.154

[http://www.siemens.com/global/en/home/market
s/wind/turbines/swt-8-0-154.html]




Aim: can it learn from experience the optimum
control strategy?

-

GIVEN: Same as
TN\ baseline
«— controller
MANIPULATED
VARIABLES
(WHAT CAN BE
CONTROLLED)
LEARN (FROM EXPERIENCE) FULFILL
SENSORS HOW TO OBIJECTIVE
(WHAT IS

WND TURBINE
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Can be anything

(ultimately, lowest
LCOE!)




First step:
check that it performs as well as baseline controller

GIVEN: SEINEES
N\ baseline
K « \ controller
MANIPULATED
VARIABLES
(WHAT CAN BE
CONTROLLED) OBJECTIVE:
LEARN (FROM EXPERIENCE) MAXIMISE
SENSORS HOW TO POWER
(WHAT IS (region 2)
MEASURED)

wND TURBINE

Compare performance against
baseline controller



NREL 5MW offshore WT

Case study
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Methodology: global Self-Optimising Control
(gSOC)

Brief review

« SOC: defining functions of process variables such that, when held
constant, optimal operation is achieved (Skogestad 2000)

« Cao (2014): model-free approach (no linearisation) - global SOC

« Already proven at industrial level in the processing industry: oil reservoir
waterflooding, 30% in Net Present Value



Methodology: gSOC

* Define objective function — d

u = manipulated J=oy,d)

Yy = Sensors

d = disturbances
* The deviation is approximated z a

as (deviation > 0 near opt) Jivr =i L du; (Ui, = i)
» Define controlled variables dJ

(6 = coef ficients) CV(y,0) = i 0

N

» Obtain 6 through  ming z z Up—Ji — z CVi(y,0) (up_] UU))Z

regression i=1 p=i,

[



Methodology: gSOC applied to Wind Turbine

‘Deﬁneu,y,d u:[l—'lﬁ]} y:[r;ﬁ;wG)P]; d:[v]
- Define objective function P=1T" ws M
- dP dP
« Then, deviation is P..,— P = E(riﬂ —I)+ E(ﬁiﬂ — Bi)
dP
== CVi =0 +0, wg+ 0T
* CVs
dP
E=CV2=H3+04'U)G+65'5

» For each disturbance value, build sample matrix [20 x 6] 2> “experience”
* 6 pitch angles
» 20 generator torques

« Then 6;0btained through regression 8
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Results (1): yes, it learns!
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Results (2): slightly better strategy
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® Baseline control trajectory

— gSO0C tracks maximum CP better than baseline control = learnt from experience

- Not a substantial advantage, but proving that can perform well as approach: use
it to discover control approaches with more complex objectives
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Conclusions
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* The global self-optimising control strategy gSOC is able to deliver the
same performance (in terms of energy extracted) as conventional control
system

« Easy development and implementation, flexible, scalable

« = does not compromise reliability / ease of use when scaled up to
consider:
* More sensor signals

 More actuators
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= | Next steps

* The “ideal” control strategy should (long-term vision):
* minimise the Levelised Cost of Energy (LCoE) [cost/kWh]
« taking into account all the data available

» Next steps: discover new optimum control strategies

* Numerical - Include in the objective function “J” additional criteria,
e.g..
* 1 p and 3p loads on the blades — equivalent fatigue damage load
 Loads at the tower base — equivalent fatigue damage load
* Multiple wind turbines

» Experimental - small scale wind turbine tested in wind tunnel
* Feedback to simple, non data-driven control strategies
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