Fully integrated load analysis included in the structural reliability assessment of a monopile supported offshore wind turbine

Objective
To investigate where cost reduction are possible in the support structure while keeping a sound and safe design:
- Probabilistic design methods are used.
- For time efficient load computations TURBU, a fast fully integrated wind turbine design and analysis tool in the frequency domain, is integrated in the probabilistic approach.

TURBU
- Full non-linear steady state model (multi-body average deformation)
- Time-invariant linear dynamic model (multi-body, Newton, Coleman)
- Linear frequency and time domain analysis of 3-bladed Horizontal Axis Wind turbines

Fatigue limit state:
\[g = \Delta - D = 0 \]
\[N_{\text{max,}i} = f(\log C_1, \log C_2) \text{ of SN-curve (DNV RP-C203)} \]
\[D = \sum_{i} \frac{n_i}{N_{\text{max,}i}} \]

Case study
- Modern 4MW wind turbine with monopile support structure, rotor diameter 130m, in 30m water depth.
- Twelve wind bins with for every wind bin six time series of one hour.
- Windspeed Weibull distribution \(k = 2.15 \) and \(u = 9.36 \text{m/s} \).

Conclusions and recommendations
- Integration of full load calculations in probabilistic design method (FORM) is successful for fatigue limit state at mudline.
- The contribution of the Miner rule (Delta) and SN-curve (logC2) variables to the variance of the limit state function is largest.
- Calculated reliability index \(\beta = 6.35 \) shows there is room for design optimisation.
- Ultimate limit state and additional locations still need to be included.

Acknowledgements
The Design for Reliable Power Performance (D4REL) project is partially sponsored by TKI Wind op Zee TKIWO2007. Partners are TU-Delft, Siemens, Van Oord, IHC Hydrohammer and Eneco..