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Introduction

Background
To estimate fatigue loads, neural networks (NNs) have been proven to be a reliable method [1-3].
After training the neural network with a set of load measurements and SCADA signals it is able to
predict the loads with SCADA signals solely. However, load measurements are costly [2].

Objectives
� assess the minimum needed length of consecutive load measurements
� investigate the time dependence of the training samples (seasonal effects)
� check the representativeness of the training samples to validate the processed samples

sizes

Measurements
� Baltic 1: 21 Siemens 2.3-93 wind turbines
� Examined wind turbines:

B01 (mainly free flow)
B08 (predominantly in wake)

� Period: Mar2013 - Mar2014
� Sampling rate: 10-minute statistics
� Availability:

B01: 60.83% (32062 records)
B08: 56.81% (29943 records)
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Fig. 1: Layout of Baltic 1.

Methods

Feed forward neural network
� One hidden-layer
� 30 neurons
� Estimator: 8 SCADA statistics
� Target: flapwise blade root bending moment

Prediction error
� relative mean squared error

� rMSE =
1

n
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number of records n, estimated loads ŷ, measured loads y

Statistical testing
� K-fold cross validation (with overlap)
� Smallest size: about two days (144 records)
� Largest size: about 45 days (4032 records)
� Step size: about two days (144 records)

Fig. 2: Scheme of k-fold cross validation with overlap.

Representativeness of training samples
� Filling degree of capture matrix of training sample

compared to filling degree of capture matrix of whole
measurement

Fig. 3: Example scheme for calculation of MSE.

Results

Mar13 Apr13 May13 Jun13 Jul13 Aug13 Sep13 Oct13 Nov13 Dec13 Jan14 Feb14
Time when measurement of sample started

 1008

 2016

 3024

 4032

S
iz
e
o
f
tr
a
in
in
g
sa
m
p
le

[r
ec
o
rd
s]

0

5

10

15

20

25

30

35

40

45

50

rM
S
E

[%
]

Fig. 3: Prediction error in relation to the time the training sample was measured for one blade
B01. The gaps within the data are caused by the data availability and filtering of overly large
time periods per training sample which were as caused by missing measurements.
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Fig. 4: Prediction error in relation to the time the training sample was measured for one blade
B08. The gaps within the data are caused by the data availability and filtering of overly large
time periods per training sample which were as caused by missing measurements.
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Fig. 5: Relation of prediction error (rMSE) and training sample size. For each training sample size,
the median of the time periods needed to gather the number of records is plotted with its
standard deviation. The sample size of about 26 days (2736 records) shows a standard deviation
greater than 15% which occurred due to a falsified prediction of one out of 204 training samples.
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Fig. 6: Representativeness of training samples for one blade of B01 assessed with the MSE of the
filling degree of their capture matrices according to the example scheme.

Conclusion
� Reliable fatigue load prediction is possible even for small sized

training samples of 2016 records (about 20 days)

� Representativeness of small sized training samples
(2016 records, about 20 days) is given

� Seasonal effects are neglectable low and do not affect the
prediction accuracy

� To generalise these findings the evaluation has to be
extended for other loads
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