

norcowe **Risk and Reliability based O&M Planning of Offshore Wind Farms**

M. Florian¹, J.D. Sørensen¹

1) Aalborg University (AAU), Department of Civil Engineering, Denmark

Introduction

Operational costs of offshore wind farms are one of the main contributors to the high cost of energy and can be significantly reduced by using an maintenance optimal strategy to support the wind farm operator in short-term decision making and longterm O&M planning.

During the PhD project an optimal risk and reliability O&M model is being developed minimize the total to operational costs by balancing the amount of corrective and preventive maintenance efforts, considering all system effects.

The developed O&M model consists of a risk based decision and cost model, which are using deterioration models, inspection results, SCADA data, condition monitoring data and climate data as inputs.

The model output is the long-term O&M planning of the wind farm and decision support to the wind farm operator in daily wind farm operation.

< 0.05

Size [m]

0.05 - 0.2

Deterioration model and cost model

Based on an existing database of crack sizes and consultation with industry members, a cost model is set up for wind turbine blades.	Category	Repair Priority	Blade Inspection Description/Findings	Continue to Run / Take Offline?	Action
	1	None	Blade is in good working condition typical for it's age with possible signs of minor wear	Continue to Run	No action necessary
	2	None	Blade shows early signs of wear or damage	Continue to Run	Monitor & Repair within 1 year
	3	Low	Blade shows significant signs of wear or damage	Continue to Run	Monitor & Repair within 6 months
	4	Medium	Blade shows advanced signs of wear or damage and should be scheduled to be repaired before	Continue to Run	Monitor & Repair within 3 months
	5	High	Blade has failed or must be taken out of service to prevent further damage	Take Offline	Repair or Replace Immediately
	2		2 4	5	T 1

0.2 - 0.5 Degradation is modeled using a continuous probabilistic fracture mechanics model, calibrated to the guide-to-defect database.

0.5 - 1

1 -

Updating the deterioration model

Since deterioration are associated with significant uncertainty, deterioration model is updated using direct information from indicators using inspection techniques and Bayesian statistics.

Risk based decision model

By having all the input data it's possible to develop a decision model including decision rules and criteria. The model is formulated as a Bayesian decision tree.

Decision rules for repair threshold and for time of inspection based on cumulated cost/risk

The lifetime cost is determined as a function of the decision plan and the one leading to the minimum expected cost is chosen

After an inspection is made, the information is used to update the degradation model and the optimization is remade for the reminder of the blades life. Therefore, the maintenance policy is updated after every inspection.

Demonstration of risk-based model

Using Monte Carlo simulations, the "exact" cost of maintenance over 25 a year lifetime is determined for a single blade. This is compared to traditional condition based strategies

Application on NORCOWE wind farm

For demonstration of practical applicability, the risk based maintenance model for blades included into a discrete event simulator similar to ones is developed for commercial/research purposes (ECN O&M tool, NOW lcob, Maintsys™).

25 year lifetimes are simulated for the 80 turbine wind farm using 3 [h] time steps and wind/wave measurements for weather conditions

Maintenance is split in blade maintenance, using the risk model and corrective/condition based maintenance for other components.

The work presented here is supported by Aalborg University and NORCOWE

norcowe A AALBORG UNIVERSITY

EERA DeepWind'2017 Radisson Blu Royal Garden Hotel, Trondheim January 18-20, 2017