

Sarah Ollier, Simon Watson s.ollier@lboro.ac.uk

Wind Phenomena: Impacts on Power Output

1... Introduction

We investigate the impact of meteorological phenomena on wind energy using:

- Synthetic Aperture Radar (SAR) examples of phenomena Greater Gabbard Estimation of power output estimation for an individual turbine wind farm, UK (fig. 1-3)(sections 1.1 - 1.4).
- and across a wind farm during these events.

1.1. Roll Vortices (RV):

Counter-rotating turbulent rolls which form and persist. In [4] RV led to periodic turbine loading and power output variations in onshore wind farms, frequent RV are expected in stable offshore wind farm regions (fig. 1).

1.2 Mesoscale gust fronts: localised high speed wind gusts and precipitation. In [6] gust associated increases in ocean wave height impacted turbine structures, whilst intermittent wind speeds reduced energy capture efficiency (Fig.2).

1.3 Atmospheric Gravity Waves (AGW)

Topographic obstacles displace coast-sea flow and waves persist in stable conditions. In [5] 0.6 ms⁻¹ decreases in wind speed were associated with AGW across a theoretical wind farm; small AGW were created by turbines unlike the larger scale AGW in fig. 3.

2. Gust front event, estimated single turbine diurnal power output

Estimated power output was calculated for a single Siemens 3.6 turbine at Greater Gabbard using meteorological mast data [9].

During the gust event power output is more variable and total power output higher than for a non-event day with a similar average wind speed (fig. 4).

3. Gravity Wave event, estimated spatial variation in power output across a theoretical wind farm

Fig. (5a) shows spatial power variation across a theoretical windfarm based on Greater Gabbard during the AGW event (fig. 3.).

the colour coding represents the power output from an individual turbine. SAR data [1] wind field processing DTU Wind Energy [2].

The theoretical farm uses Greater Gabbard layout in a location clear of turbines to avoid errors in wind speed estimation from SAR introduced by scattering from the turbines.

There is considerably higher spatial variation in power output and a higher total power output for the farm compared with a non-event day with a similar average wind speed (b).

4... Future directions

- SAR and mesoscale model (WRF) based climatology of phenomena around wind farms.
- Analysis of turbine condition monitoring data (SCADA) during events.
- 3D modelling of phenomena-turbine interaction to assess fatigue loading.

[9] Marine Data Exchange, Greater Gabbard Offshore Windfarm Ltd, Meteorological Mast Data (IGMMZ) http://www.marinedataexchange.co.uk/