Control of HVDC systems based on diode rectifier for offshore wind farm applications

Ida L. Flåten, Gilbert Bergna-Diaz, Santiago Sanchez, Elisabetta Tedeschi

Department of Electrical Power Engineering Norwegian University of Science and Technology

Introduction

The integration of offshore wind energy into the power system, has led to progressive research in HVDC-converters where a possible solution is diode rectifier. The potential advantages with diode rectifier compared to conventional converters as Line Commutated Converter (LCC) and Voltage Source Converter (VSC) are:

- lower conduction losses
- reduced installation costs
- reduced converter size
- higher reliability

System model

Objectives

- · Examine the main adaptations of the control system with the system topology with diode rectifier
- · Since the diode rectifier is uncontrolled, another part of the system will have to overtake the control of the ac-grid voltage and frequency, conventionally conducted by the HVDC converter
- . The main field of reseach is the front end converters of the wind turbines, which can overtake the control of the ac-grid

Control system

Figure 1 can be described by equation 1-4 in a synchronous reference frame with $V_{Fq} = 0$, and makes the base for the control system. An extensive deduction of the control system based on these equations can be found in [1].

$$\frac{dI_{Fdi}}{dt} = -\frac{R_{Twi}}{L_{Twi}}I_{Fdi} + \omega_F I_{Fqi} + \frac{V_{Wdi}}{L_{Twi}} - \frac{V_{Fd}}{L_{Twi}}$$
(1)

$$\frac{dI_{Fqi}}{dt} = -\frac{\kappa_{Twi}}{L_{Twi}}I_{Fqi} - \omega_F I_{Fdi} + \frac{v_{Wqi}}{L_{Twi}}$$
(2)
$$\frac{dV_{Fd}}{dV_{Fd}} = \frac{1}{1}\sum_{r=1}^{n} \frac{1}{r} I_{Twi}$$
(2)

$$\frac{1}{dt} = \frac{1}{C_F} \sum_{i=1}^{n} I_{Fdi} - \frac{1}{C_F} I_{Racd}$$
(3)

$$\omega_{\rm F} V_{\rm Fd} = \frac{1}{C_{\rm F}} \sum_{i=1}^{I} I_{\rm Fqi} - \frac{1}{C_{\rm F}} I_{\rm Racq} \tag{4}$$

Phase Locked Loop

- The Phase Locked Loop (PLL) extracts the voltage signal at the point of common coupling (PCC) to determine the phase angle and frequency of the ac-grid
- The system model has unidirectional power flow, and the traditional PLL can not achieve its function
- A fixed reference signal of the phase angle and frequency was proposed in [2]
- Another solution is to modify the traditional PLL with an integrated phase angle reference [3]. This PLL is shown in equation 5.

$$\frac{d\theta}{dt} = \omega^* + \Delta \omega = \omega^* + K_P(V_{Fq} - V_{Fq}^*) + K_I \int (V_{Fq} - V_{Fq}^*) dt$$
(5)

Figure 2: The voltage V_{F} , at PCC, using fixed reference signal and modified PLL respectively

Droop control

The droop control can be constructed from P/V and Q/f relations as seen from the system equations with output/input terminology. The latter can also be shifted to a f/Q droop where the output of this droop control then can be used as the input to the modified PLL.

Figure 3: Conventional solution: P/V and Q/f droop | Our solution: P/V and f/Q droop

With P/V and Q/f droop method the frequency, voltage and current control loop is following its reference, but with a large steady state error. In addition $V_{\mbox{Fq}}$ is no longer zero.

Figure 4: (a) V_F at PCC (b) frequency control, both with P/V and Q/f droop control

The P/V droop is maintained while the Q/f curve is shifted and the frequency is used as the integrated phase angle in the PLL. With this method $V_{Fq} = 0$

Figure 5: The voltage, V_F , at PCC in the distributed model with P/V and f/Q droop control

Summary and conclusions

- . The PLL was found as a crucial part of the control strategy since the control method was based upon the assumption that $V_{Fq} = 0$
- The conventional PLL could not serve its function together with diode rectifier as HVDC converter
- Fixed reference signal of frequency was attempted applied, but $V_{\mbox{Fq}}$ was not zero
- · PLL with integrated phase angle reference was chosen for further simulations
- Droop control relating ω^* to the modified PLL was successfully implemented
- Reactive power sharing among the turbines was achieved
- Active power control was implemented in a master-slave technique
- Further work will include improving the active power control to also obtain active power sharing among the turbines

References

- [1] R. Blasco-Gimenez et al., "Distributed voltage and frequency control of offshore wind farms connected with a diode based HVDC link", Nov. 2010
- H.Eckel et al., "FixRef: A control strategy for offshore wind farms with different wind turbine types and diode rectifier HVDC transmission", June 2016
- [3] S. Sanchez "Stability Investigation of Power Electronic Systems", March 2015