

Unsteady Aerodynamics Of FOWT: Toward Experimental Validation Of Equivalent Lumped-element Models

Ilmas Bayati, Luca Bernini, <u>Alberto Zasso</u>

Department of Mechanical Engineering

2DoF Setup

- Polimi WT 2011 Test of Vestas V52 (may 2011)
- Surge imposed motion
- 1/25 geometric blade scale D=2.1m Ω =2.5Hz

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

2DoF Setup experimental Session

• **Steady** configuration

- **Unsteady** configuration: Surge and Pitch Sine waves
 - Wind/No Wind measuremenents
 - Inertial Forces subtraction

Frequency (f)	[Hz]	0.2	0.4	0.6	1
Amplitude (A)	[mm]	10	20	40	80
Wind Speed (W)	[m/s]	4.5	5	5.5	6

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

2DoF Setup Previous Experimental Session

- Aerodynamic Histeresis registered
- Dimension and shape of cycle depends on dynamic conditions
- Does FAST/Aerodyn predict this behaviour?

Example of histeretic cycles: aerodynamic pitch moment

Modelling Imposed Motion In FAST

User Input File

- Platform Dof: <u>Surge</u> and <u>Pitch</u>
- Additional Damping and Stiffness matrices

FAST 8 custom version

Definition of a control force at the tower's base to get an imposed motion

 $FORCE = K_add \cdot (PtfmDisp - X) + C_add \cdot (PtfmVel - XD)$

K_add and *C_add* : **parameters** of the **oscillator** f >10*f imposed motion h =1

HydroDyn.dat

HydroDyn_input.f90 HydroDyn_Types.f90 HydroDyn.f90

K_add and C_add (see FAST7/Seismic module)

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

FAST 8 Simulations

<u>DYNIN</u>

Generalized Dynamic Wake (GDW) = acceleration potential method

- Does not require iterative process
 - o More general pressure distribution accross rotor
 - Fully nonlinear implementation: turbulence and spatial variation of inflow
 - **Inherent modelling** of:
 - Dynamic wake effect _____
 - > Tip losses
 - Skewed wake

Accounting for time lag in the induced velocity created by vorticity shed from blades and convected downstream

Nomeclature

Experimental/Numerical test scheme

Variable definition

- $x \rightarrow$ surge motion displacement
- $\dot{x} \rightarrow$ surge motion velocity

$$V_{A} = V + \dot{x} \rightarrow \text{Apparent wind}$$

$$Ct = \frac{T}{0,5\rho V_{a}(\frac{\pi D^{2}}{4})} \rightarrow \text{Thrust coefficient}$$

$$TSR = \frac{\Omega D/2}{V} \rightarrow \text{Nominal tip speed ratio}$$

$$tsr = \frac{\Omega D/2}{V_{A}} \rightarrow \text{Effective tip speed ratio}$$

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

Experimental vs Numerical results

Static thrust

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

Experimental vs Numerical results

Dynamic results

- Surge motion frequency 0.4Hz
- Various amplitude

- Agreement Experimental & Numerical
 → Dissipative Hysteresis cycles
- Disagreement in the time delay value i.e.
 → amplitude of hysteresis cycles

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

Experimental vs Numerical results

Dynamic results

- Surge motion frequency 0.6Hz
- Various amplitude

- Agreement Experimental & Numerical → Larger Hysteresis cycles
- GDW underestimates the hysteresis effects

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

Lumped-element model: advantages

- SS model aero (control, integrated with hydro)
- Different parameters (wt verification) relationship with wind/sea states (nominal condition for simulations)
- Large wind farms control

Proposed lumped model

Ct=Ct_static(TSR)+Ct_unsteady(tsr)

I.Bayati, L.Bernini, A.Zasso – Department of Mechanical Engineering POLITECNICO MILANO 1863

Proposed lumped model

Good results for turbine thrust unsteady modelling both for numerical and experimental data. Parameters identification is required

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

Lumped model identification

Lumped model parameter Are identified via quadratic error minimization for each nominal TSR working condition.

Model parameters function of **reduced frequency and amplitude** of the surge motion

$$f_{rid} = \frac{SGfreq \cdot D / 2}{V}$$
$$Amp_{tsr} = \frac{\Delta(tsr)}{2}$$

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

LIFES 50+ Project

2011 PoliMi tests

2016-17 PoliMi LIFES50+ tests

1st LIFES50+ deliverable for Polimi

is the validation of steady/unsteady AeroDyn for FOWT

The 2011 Polimi wind tunnel tests were used as preliminary set of data for the numerical and experimental comparison

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

LIFES50+ A novel hybrid real time approach (Hardware-In-The-Loop)

Aerodynamics (real) + Hydrodinamics (computed)

Aerodynamics (Computed) + Hydrodinamics (Real)

- Less constrictive scaling issues
- Exploiting the advantages of each test facility

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

LIFES50+ Aeroelastic Model Blade Design: DTU 10 MW

PoliMi &DTU Airfoil Characterization LowRe Wind Tunnel

Selig SD7032 Airfoil

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

LIFES50+ Aeroelastic Model Blade Design: DTU 10 MW

Aerodynamic Scaling

Different airfoil used in WT

Model chord is different from the geometrically scaled. Account for polar Reynolds dependency

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering

Design and verification Tools

Since LIFES50+ will be a multidisciplinary project (Aero, Hydro, Structural, Control,...). Advanced simulation tools both for design and verification are actually under implementation at Polimi.

- Fast (aero-servo-hydro)
- Adams (Multibody)
- AdWimo (AeroDyn+Adams)

Figure 1: Coupled flexible multibody model the robot and the FOWT.

Figure 3: Numerical methodology.

A design support multibody tool for assessing the dynamic capabilities of a wind tunnel 6DoF/HIL setup. Belloli-Giberti-Fiore DeepWind Poster

I.Bayati, L.Bernini, A.Zasso - Department of Mechanical Engineering