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Hydrodynamic Modeling AMT

Motivation:
— Need accurate and realistic load models to evaluate control
strategies
— Upscaling of monopiles will give new response characteristics
— Load theory validation and relative impact on lifetime
estimation
Findings:
— Significant higher order contributions to fatigue damage in
sea-states with Hg > D/2
— Necessary to include diffraction effects on second order inertia
forces

— Higher order loads more prominent at low damping levels
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Model AMCfS

Hub height = 115m

Mean depth = 30m<

Soil = 42m
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Model

Hub height = 115m

Mean depth = 30m<

Soil = 42m

AMCS

Damage calculation
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Model AMGE

Parameters:
Diameter 9m
Depth 30m

Structural damping 3% of critical damping (Rayleigh)
Aerodynamic damping | Constant Rayleigh included in structural

Soil Non-linear springs for sand and clay
Natural periods Mode 1: 4.2s, Mode 2: 1.0s
Sea-states FLS
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Modal analysis AMC
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Wave load models AMTG

O1
O1D
02
O3
FNV3
O1P
O2P

Linear waves

Linear waves with diffraction (MacCamy and Fuchs)
Second order contribution from kinematics stretching
Third+fourth order contribution from kinematics stretching
Third order FNV - direct implementation

First order distributed pressure from panel code

Second order total force from panel code
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Diffraction - MacCamy and Fuchs”"M&5

Correction of wave load due to interaction with large-volume
structure. aeq = equivalent water particle acceleration.

+ Exact
——Fitted function
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Diffraction - MacCamy and Fuchs”"M&5

Correction of wave load due to interaction with large-volume
structure. aeq = equivalent water particle acceleration.
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Second order wave elevation =~ AMOS
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Second order sum-frequency AMTS
from panel code

HydroD - Wadam
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Second order sum-frequency AMTG
from panel code

Pressure QTF [-]

Non-dimensional 5
resulting pressure 10
in x-direction over Es
the column as a -eo
function of w1, wo =

and z. .

. 2
w, [rad/s] w, [rad’s]
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Second order sum-frequency AMTS
from panel code

The second-order
pressures are
lumpedto z=0
and act as a point
force.
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Load application AMG

Distrubuted, point force or moment?
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Load application AMCS

Distrubuted, point force or moment?
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Third Order ENV AMGS

Third order horizontal force from linear elevation and diffraction
potential assuming deep water:

2
VG = prr? [41 <C1 Utz + 2WWy + UUx — gu’Wt>

—<3>(u2+w)+ﬂu2u

z=0
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Kinematics models AMC

Assuming
kia = O(e)
kD = O(9)

wheree < 1ande~ 4
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Kinematics models AMCE

Assuming 7 p
kéa = O(c) —
KD = O(3) ] — 3

+
Order of horizontal Gt

inertia forces:

— A: €62
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Kinematics models AMCE

Assuming 7 p
kéa = O(c) —
kD = 0() - — ¢
+
Order of horizontal Gt

inertia forces:

— A: €62
— B+C: €262
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Kinematics models AMC

Assuming Py
kéa = O(c) Y
kD — O(5) 7 — %
A I
Order of horizontal / —

inertia forces:

— A: 162

— B+C: €242
— D+E+F: €352
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. _ =
Kinematics models AMC

Assuming -
kCa — O(E) ..“'- 7 H —_— 1
kD = O(5) P —
----- +
Order of horizontal G+ G2

inertia forces:

— A: €16

— B+C: €242
— D+E+F: 862
— G+H: 442
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Kinematics models

AMT

Fx/(0.5mpD?) O(Fx) Fy o Frequency
A % u(2)dz €52 Ca 1w
B ffh Uo t(2)dz €262 ¢ 2w
C  JoO4)y 4(0)dz 22 ¢ 2w
D W) 2y, dz €352 2 1w + 3w
E o0 upe(0)az e g 1w+ 8w
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Third order forces AMTS
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Third order forces AMC
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Kinematics models

AMT

Second order incident wave potential and stretched first order potential
Third and fourth order force from stretched first and second order potential
First order diffraction pressure from panel code modeled as acceleration

Notation Fields Description

o1 A First order incident wave potential

Oo1D A First order incident wave potential w/diffraction

02 B+C

03 D+E+F+G+H

O1P A

O2P B+C Total second order diffraction force from panel code
FNV3 N/A

Third order FNV ringing force based on first order incident potential
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Wave kinematics grid AMEG

— Logarithmically distributed in z-direction to increase accuracy
in wave-zone

— 4.3 million points for 30 minute simulation with df = 0.1 and
Nz = 40, — large files!
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Sea-states AMG

Chosen sea-states for Dogger Bank conditions. JONSWAP spectrum
with peak parameter 3.3 is used.
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Figure: Sea-states with finitepdepth KC number for h=30m.
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Sea-states AMGE

Chosen sea-states for Dogger Bank conditions. JONSWAP spectrum
with peak parameter 3.3 is used.

No. | Hs[m] | Tp[s] | fue.7pl] | KCmax[-] | #D/A[]
1 146 | 472 [ 0.1002 | 05 1.28
2 295 | 6.18 | 0.0314 | 1.0 0.75
3 479 | 750 | 0.0092 | 1.7 0.50
4 6.54 | 8.76 | 0.0016 | 2.3 0.37
5 8.13 | 9.88 | 0.0002 | 3.0 0.29
6* | 813 | 13.00 | 0.0000 | 35 0.17
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Results AMG

— For each sea-state and hydrodynamic model, 3x30 minute
simulations have been run without wind

— Average findings presented
— Small variances between the seeds
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Results AMES

Baseline maximum moment

2 T T T T T T
EmO1D
I O1D+02
1.5}/ O1D+02+03 g
I O1D+02+FNV3 _
- = O1P
20 1 L|=301P+02P i
= C_101P+02P+FNV3
05} .
0
1 2 3 4 5 6

Sea-state

NTNU
Norwegian University of
Science and Technology

www.ntnu.edu/amos‘\ EERA DeepWind'2016 22




AMES

Results
Fatigue damage relative to first order incident wave
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Results AMES

Relative fatigue damage accounting for probability of occurrence
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Results AMES

Relative fatigue damage accounting for probability of occurrence
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Results AMES

Increased fatigue damage for lightly damped system: 3% — 1%

10 T T T T T T
I O1
sl EmO1D |
o B O1D+02
= I O1D+02+03
o 6} I O1D+02+FNV3 |-
~ = o1P
9 _101P+O2P
g 4+ [_101P+O2P+FNV3|-
o
2 4
0 |
1 2 3 4 5 6
Sea-state

NTNU
Norwegian University of
Science and Technology

.edu/amos EERA DeepWind'2016 22




Results

Drag force contribution due to wave elevation and increasing
KC-number
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Time-frequency analysis AMC

Wavelet analysis revealing most dominating oscillation periods.

01D, Sea-state 5
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Conclusions AMC

— When Hg > D/2, significant contributions to fatigue damage
from higher order loads are observed
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Conclusions AMCS

— When Hg > D/2, significant contributions to fatigue damage
from higher order loads are observed

— Higher order effects not important for smaller sea-states -
overall small contributions when frequency of occurrence is
accounted for

— Lower damping level results in more prominent contributions
from higher order forces

— Drag forces still important when wave elevation is accounted
for - need sensitivity study of Cp

— A Morison type loading for second order load seems to be
predicting very large responses and fatigue damage for large
sea-states - elevation important

— Important to include diffraction effects - both first and second
order
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Thank you for your attention.
- Questions?
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