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Does load sequence and weather seasonality
influence fatigue crack growth?



Trend: Aging offshore wind farms

Needs:
- Optimize maintenance and inspection scheduling
- Reassess fatigue lifetime

- Decide about lifetime extension

Challenges:
- Uncertainties in loading, material resistance, design models
- Design lifetime differs from reality

- Update lifetime prediction through monitoring and inspections

mmmms) Fatigue crack propagation




SN-curve approach
Linear damage accumulation
Does not describe crack propagation

Neglects sequence effects
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Fig 1. SN-curves and number of stress cycles during 20 years.



Agenda

- Methods
* Fatigue crack propagation
*  Markov weather model

- Results

* Load sequence

*  Weather seasonality

- Conclusion
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e Paris law
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a : crack depth [mm]

=C(AK,)" N : number of cycles [-]
AK, : stress intensity factor [...]
AS : stress range [MPd]
=AS-Y/r-a Y : geometry factor [-]

C, m : material constants [-]

Physical and mathematical sequence effect

* Calibration of C with SN-curve results

——I1: TB In(C)=-28.74
—I: TB In(C)=-28.53
——I: TB In(C)=-28.52
===1: TB In(C)=-28.51
—r: ML In(C)=-28.74
—r: ML In(C)=-28.37
=—r: ML In(C)=-28.36
===r: ML In(C)=-28.35
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Crack growth at tower bottom (TB) and mudline
(ML) for various C parameter.



Requirements:
+  Wind distribution
+  Seasonal trend

+  Weather persistence
Stochastic process with finite memory

Transition matrix T,, from historical data
(22-years of wind speed in 6h resolution)
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Discrete time series for wind speed:
2 — 30 m/s with 6h time steps
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11
10F
2 9
E 7 } } ,
2 8
(0]
& 7 ]: {
©
C
* BES
5
4 1 1 1 1 1 1 1 1 1 1
Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec
Fig 3. Monthly wind speed variation.
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Fig 4. Wind speed distribution.
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Does load sequence and weather seasonality
influence fatigue crack growth?



NREL 5SMW and monopile from OC3 project
(Nichols et al. 2009)

Met-ocean data from Upwind project
(Fischer et al. 2010)

15 fatigue load cases: power production, idling

Structural response (1h time series) to
aerodynamic and hydrodynamic loading with
impulse-based substructuring

Analysis of mathematical effect of load
sequence only

Rotor loads
Aerodynamic

damping
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Fig 5. Model of offshore wind monopile.
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Fig 6. Crack growth for 6h time interval assuming Fig 7. Crack growth during structural lifetime as a function
10mm initial crack size. of stress ranges. Red line gives number of stress cycles.
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Fig 8. Comparison of crack growths in
persistent weather and random weather.

N O N
0o O N

Crack depth [mm]

28 29 30 31
Time [years]

Fig 9. Zoom into Figure 8.



Conclusion

Under the assumptions made in this study...

1. Not necessary to reassess lifetimes regarding history of load sequence

2. Inspection and repair planning of aging wind turbines should account for
weather seasonality

3. Interesting for future:
What is the impact of ultimate loads on fatigue lifetime?
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Appx. 1: Parameters of crack growth model

Tab 2. Parameters applied in crack growth model.

I N N N

DNV 2014
ac mm 60/27 Li et al 2011,
Dong et al 2012
m - 3.1 DNV 2014
In(C) [...] -28.36/-28.52 calibrated

Y - 1 Kirkemo 1998
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