

Fatigue crack growth for monopiles

Lisa Ziegler^{1,2}, Sebastian Schafhirt², Matti Scheu¹ & Michael Muskulus²

- ¹ Rambøll Wind, Germany
- ² Norwegian University of Science and Technology

Does load sequence and weather seasonality influence fatigue crack growth?

Why should we model fatigue crack propagation?

Trend: Aging offshore wind farms

Needs:

- Optimize maintenance and inspection scheduling
- Reassess fatigue lifetime
- Decide about lifetime extension

Challenges:

- Uncertainties in loading, material resistance, design models
- Design lifetime differs from reality
- Update lifetime prediction through monitoring and inspections

Fatigue design in offshore wind today

- SN-curve approach
- Linear damage accumulation
- Does not describe crack propagation
- Neglects sequence effects

$$D = \sum_{i} \frac{n_i}{N_i}$$

D: damage [-]
n_i: number of occurred stress cycles [-]
N_i: number of stress cycles until failure [-]

Fig 1. SN-curves and number of stress cycles during 20 years.

Agenda

- Methods
 - Fatigue crack propagation
 - Markov weather model
- Results
 - Load sequence
 - Weather seasonality
- Conclusion

Fatigue crack propagation

Paris law

$$\frac{da}{dN} = C(\Delta K_I)^m$$

$$\Delta K_I = \Delta S \cdot Y \sqrt{\pi \cdot a}$$

a : crack depth [mm]

N: number of cycles [-]

 ΔK_1 : stress intensity factor [...]

 ΔS : stress range [MPa]

Y: geometry factor [-]

C, m: material constants [-]

- Physical and mathematical sequence effect
- Calibration of C with SN-curve results

Tab 1. Damage, extrapolated lifetime and calibrated C.

Location	20 year damage [-]	T _{failure} [years]	In(C) [-]
ТВ	1.21	16.48	-28.52
ML	0.61	32.89	-28.36

Fig 2. Crack growth at tower bottom (TB) and mudline (ML) for various C parameter.

Markov weather model

- Requirements:
 - + Wind distribution
 - + Seasonal trend
 - + Weather persistence
- Stochastic process with finite memory
- Transition matrix T_M from historical data
 (22-years of wind speed in 6h resolution)

$$T_{M} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1s} \\ p_{21} & p_{22} & \cdots & p_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ p_{s1} & p_{s2} & \cdots & p_{ss} \end{bmatrix} \qquad \begin{array}{c} \text{with} \\ T_{M}: \text{ transition matrix [-]} \\ \text{p: transition probability [-]} \end{array}$$

Discrete time series for wind speed: 2 - 30 m/s with 6h time steps

Fig 3. Monthly wind speed variation.

Fig 4. Wind speed distribution.

Does load sequence and weather seasonality influence fatigue crack growth?

Case study

- NREL 5MW and monopile from OC3 project (Nichols et al. 2009)
- Met-ocean data from Upwind project (Fischer et al. 2010)
- 15 fatigue load cases: power production, idling
- Structural response (1h time series) to aerodynamic and hydrodynamic loading with impulse-based substructuring
 - Analysis of mathematical effect of load sequence only

Fig 5. Model of offshore wind monopile.

Results: load sequence

Fig 6. Crack growth for 6h time interval assuming 10mm initial crack size.

Fig 7. Crack growth during structural lifetime as a function of stress ranges. Red line gives number of stress cycles.

Results: weather seasonality

Fig 8. Comparison of crack growths in persistent weather and random weather.

Fig 9. Zoom into Figure 8.

Conclusion

Under the assumptions made in this study...

- 1. Not necessary to reassess lifetimes regarding history of load sequence
- 2. Inspection and repair planning of aging wind turbines should account for weather seasonality
- 3. Interesting for future:
 What is the impact of ultimate loads on fatigue lifetime?

Thanks for your attention

Lisa Ziegler

PhD researcher lisa.ziegler@ramboll.com +49 (0) 151 44 006 445

Rambøll Wind Hamburg, Germany www.ramboll.com/wind

Appx. 1: Parameters of crack growth model

Tab 2. Parameters applied in crack growth model.

Parameter	Unit	Value	Source
a ₀	mm	0.1	DNV 2014
a_{C}	mm	60/27	Li et al 2011, Dong et al 2012
m	-	3.1	DNV 2014
In(C)	[]	-28.36/-28.52	calibrated
Υ	-	1	Kirkemo 1998

Appx. 2: AWESOME

- AWESOME = Advanced wind energy systems operation and maintenance expertise
- Marie Skłodowska-Curie Innovative Training Networks
- 11 PhD's
- 0&M
 - Failure diagnostic and prognostic
 - Maintenance scheduling
 - Strategy optimization

NORWAY DENMARK NTNU DTU SIMIS DONG UNITED KINGDOM **LBORO USTRATH SGURR** DNV GL SPAIN CIRCE **UCLM** GERMANY AFF **UOL-FORWIND** INGFTFAM TUM RAMBOLL ALSTOM **CETASA** ITALY **POLIMI EGP**

www.awesome-h2020.eu

Appx. 3: References

- DNV. 2014. Design of offshore wind turbine structures. Offshore standard DNV-OS-J101. Høvik: Det Norske Veritas.
- Dong W, Moan T, & Gao, Z. 2012. Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. *Reliability Engineering and System Safety, 106*: 11-27.
- Fischer T, De Vries WE, & Schmidt B. 2010. UpWind design basis (WP4: Offshore foundations and support structures). Upwind.
- Li Y, Lence BJ, Shi-Liang Z, & Wu Q. 2011. Stochastic Fatigue Assessment for Berthing Monopiles in Inland Waterways. J. Waterway, Port, Coastal, Ocean Eng, 137 (2): 43–53. DOI: 10.1061/(ASCE)WW.1943-5460.0000063.
- Nichols J, et al. 2009. Offshore code comparison collaboration within IEA Wind Annex XXIII: phase III results regarding tripod support structure modeling. 47th AIAA Aerospace Sciences Meeting and Exhibit, 5–8 January 2008, Orlando, Florida, AIAA Meeting Papers on Disc 14 (1).
- Kirkemo F. 1988. Applications of probabilistic fracture mechanics to offshore structures. Applied Mechanics Reviews, 41(2), 61-84.