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Motivation

State-of-the-art in assessing whether a weather sensitive offshore
operation is safe to commence is only based on significant wave
height Hs and wind speed at the location in question.

The actual limitations of installation are mostly physical:

« strength of the installation equipment used - crane cable
loads, tug wire tensions, etc.

« Limits on the equipment being installed - maximum
acceleration limits on wind turbine nacelle/rotor components.
- safe working environment conditions - motions and

accelerations at the height/location of the installation
limiting or prohibiting the installation crews work.

Transition from limits on weather conditions to limits on physical
response criteria in decision making would improve the predictions of
weather windows for installation and potentially reduce the cost of
energy.



DECOFF method and Topology Expected Software Tool

Operation phase input
(cranes, vessels, lifting

Forecasted met-ocean

conditions :
equipment, etc.).

Time series of relevant responses (equipment loads, motions)

Operational
Acceptance limits
(maximum crane loads,
allowable motions).

Estimates of statistical

STATISTICAL MODEL parameters of
extreme responses

Estimates of Probability of Operation Failure

Decision making based on
combination of
Costs and Probabilities of
failed operations




DECOFF — Example test case

Hywind Rotor-Lift Operation

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

Transition to Preparation for q Lift-up close to Connecting
field lift Rotor lift up Rotate rotor nacelle rotor to nacelle
8 hours 3 hours 0.2 hours 0.2 hours 0.4 hours 0.3 hours

Total duration 12.1 hours

Test case:

« Phases 3-6 — barge is at the installation position, rotor is lifted
up and bolted to the nacelle. i




Limiting operational parameters

Hywind Rotor-Lift Operation

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
Transition to Preparation for : Lift-up close to Connecting
field lift Rotor lift up Rotate rotor nacelle rotor to nacelle
8 hours 3 hours 0.2 hours 0.2 hours 0.4 hours 0.3 hours

Phase 3 Operation Limits _ o
Phase 6 Operation Limits

Crane Load

Lift Wir_e Tensiqn * Relative yaw angle between rotor and special tool
Tug Wire Tension * Relative tiltangle between rotor and special tool
Airgap between blades and waves « Relative axial velocity

Rotor acceleration « Relative radial velocity

Rotor rotational acceleration - Airgal between blade 3 and tower

Rotor Sway motion

Rotor Surge motion




Location: 7 ° W 55.25 ° N

Short term Validation. Simulation In

FINO 3 site
Forecast: ECMWF 2013
2013-08-06
51 ensemble members

containing up to 250 hours

lead time forecast.

Wind speed and
direction.

Sig wave height and
peak and direction.

Swell sig wave height
and mean period and
direction.
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Types of limit states

Non-exceedance limit state. The
response has to be above the
acceptance Ilimit (no slack in
lifting cables, tug wires, tower
clearance etc.)
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PF,ens = Fnon—exc,ens (Rmax)

Exceedance Ilimit state. The
response has to be below a
certain acceptance limit
(maximum motions, loads on
lifting equipment etc.)
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Types of limit states continued

Deterministic limit state.
Defined by a single value of

acceptance/ failure limit.
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Non-deterministic Ilimit state.
Defined by a distribution of the
acceptance limit.
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Types of limit states continued

Deterministic limit Sstate. Non-deterministic Ilimit state.
Defined by a single value of Defined by a distribution of the
acceptance/ failure limit. acceptance limit.
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Procedure of Failure Probabillity estimation

Weather

forecasts are passed through hydro-elastic
simulator and response time series are analysed statistically
in order to obtain Probabilities of Failed operations:

1. Peak Over Threshold method is applied to extract extreme

values of relevant responses (R) (withE(R)+ 1.4-,/VAR(R)
threshold and 5 response cycles time separation).
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Procedure of Failure Probability estimation

2. Weibull or Normal distribution (adjusted o
for number of peaks after POT) is fitted to
the extremes using Maximum Likelihood =
parameter estimation. 5
g 107
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Proof of Concept. Short Term Validation

WEATHER FORECAST INPUT

3 | | | |
E
£21
=
[+5)
T
el — _
= - = =
o \ | | | | | |
0 10 20 30 40 50 60 70
SIMO OUTPUT RESPONSE, Crane Load
7000
| | |
6000
5000
4000
o MAX RESPONSE DISTRIBUTIONS, Leadtime 72 Hours HISTOGRAM OF FAILURE RATE Leadtime 72 Hours
107 E T f T T L 1 T T T T T T T T T
10° b
) g
-4 S
:'Igig : 1e-05 [
i :
%8 ;
-9
13'31‘1’ : 1e-10
107 E
i 3
101 3
18:15 - | | | L le-15 - | | | | T ; ; ; ;
5000 5500 6000 6500 7000 7500 8000 05 0.45 0.4 0.35 03 0.25 02 0.15 01 0.05 0
Response, [kN] Relative frequency, [-]
o Estimated Probability of failure, PHASES 3 to 5, Max Crane Load Limit State
10 §
| | | | DNV P{ limit for Offshore Lifting 0peraﬁuns|
# ,-
m
x % z
w00 ¥ % —
5 :
L
L4
! x ! ! : o
] 10 20 30 40 50 60 70

Time from 2013-08-06 00:00:00 GMT [hours]



Combination of Limit state Probabilites of Failure

Hywind Rotor-Lift Operation

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6-7
Transition to Preparation for : Lift-up close to Connecting
field lift Rotor lift up Rotate rotor nacelle rotor to nacelle
8 hours 3 hours 0.2 hours 0.2 hours 0.4 hours 0.3 hours
F)F, CranelLoad, Ph 3 + I:)F, CranelLoad,Ph 4 + I:)F, CranelLoad, Ph5 = I:)F, Crane Load
+
I:)F, Air Gap Blade Water,Ph 2 + I:)F, Air Gap Blade Water,Ph 2 = PF, Air Gap Blade Water
+
P Rotor sway, Ph 3 T PE Rotor sway, Ph4 + PE Rotor sway, Ph5 = PE Rotor Sway
+
PF, Acceleration, Ph 3 + IDF, Acceleration, Ph 4 + IDF, Acceleration, Ph 5 = PF, Acceleration
+ ... =
Niim States P i
. — — — . . F, Operation
PF,Operatlon 1 l_[i=1 (1 PF,le State,l) D




FProbability of Failure, [-]

Limit state Probabilities of Failure

WEATHER FORECAST INPUT
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O p erat | on Fal I ure Rate PF,Operation: 1- Hi\,:Lim States(l - PF,Lim State,i)

5. A sum over all the phases gives the total Operation failure rate. Based on Pgg,
weather windows, suitable for installation, could be found.

WEATHER FORECAST INPUT
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Risk based decision making

N

phases N|_s
waiting +Cequipment + Z Z I:)LS,i,jCLS,i,j

i=1 \ j=l

Cita =C

total

Having Probabilities of Failure related to a particular limit state and
combining those with monetary consequences of failure with
particular limit state Risk Based decision making is possible.

What is needed:

« Cost in NOK (€) related to Operation Failure with a particular limit
state.

« Cost in NOK (€) of complete Operation Failure for less detailed
analysis (one failure results in loss of all equipment and complete
Operation Failure).



Long term validation. Input

Location: 7 ° W 6§5.25 ° N FINO 3 site.
Forecast: ECMWF May 15t to August 15t 2014.
measurements @FINO3.
Parameters used:
— Wind speed and direction.
— Significant wave height and peak and direction.
— Swell sig wave height and mean period and direction.
Hydrodynamic model: Hywind Rotor Lift operation.

Benchmarking: The proposed method is validated against a
standard “Alpha-Factor” from DNV-HS-101.

Different benchmarking cases:
— Tabulated Alpha-Factors from DNV-HS-10.

— Site specific Alpha-Factors for FINO3 site according to
DNV-HS-10.

— DECOFF method with ECMWF forecasts @FINOS3.
— DECOFF method with measurements @FINOS3.



Long term validation. Alpha-Factor method

Weather limits for Hywind Rotor Lift operation:
* Hg=1.5m, T,=5s, W =7m/s.

Case o, for ar, for a for
H.=1.5m T,=5s W, =7m/s
0.8

0.705 inf 0.78 1
T4-2.WFQ =B 0.740 inf 0.78 1 .
T 4-3. WFQ = A+M 0.780 inf 0.78 1 0.8
T 4-4. WFQ = A+C 0.925 inf 0.78 1 0.8
T 4-5. WFQ = A+M+C 0.925 inf 0.78 1 0.8
FINO3 measurements 0.810 inf 0.78 1 0.8

T x-y — table indicator for reference in DNV-HS-10;
WFQ — weather forecast quality class A, B or C.

+M — meteorologist on site, +C — calibrated based on measurement data.
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Long term validation. Alpha-Factor method
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Weather Window Length, [hours]

Long term validation. Results

Alpha-Factor method

Total of 12 Weather Windows
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Long term validation. Results

DECOFF method with FINO3

Alpha-Factor method measurements

Total of 31 Weather Windows

Total of 12 Weather Windows
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Number of weather windows, [-]
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Conclusions and discussion

After extensive testing it can be concluded that the procedure for
estimation of Probability of Failed Operations produces consistent
results and could be used to assist in decision making for Offshore
Wind Turbine installation.

The proposed new DECOFF method performs better or at least as
good as the standard “Alpha-factor” method (when number of
windows x total window length measure is used).

Weather forecast uncertainty plays a central role in predicting
weather windows. With increasing uncertainty the length and
number of weather windows decreases. This is on par with the
standard “Alpha-factor” method.

Using better, less uncertain, weather forecasts (calibrated weather
forecasts, downscaling etc.) would be very beneficial in the
performance of DECOFF method.

Easy extension to Oil and Gas an other relevant industries.



Future work

Possible future work would include but should not be limited to:

« Updating the model with Structural Reliability techniques in order
to reduce the demand on a lot of simulations necessary to obtained
reliable results.

« Splitting the limit states in Serviceability and Ultimate.

* Including Costs of Failure to produce a “Risk-Based” aspect
allowing to evaluate different weather windows in terms of
expected Risk rather than just Probability of Failure.

* Improving the accuracy of weather forecasts.

- Extending the methodology to more general Offshore Operations
(Oil and Gas, Wind turbine installation on monopoles/jackets etc.).
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