

Vertical-axis wind turbine design load cases investigation and load comparison with horizontal axis wind turbine

 $P = \frac{1}{2} \rho A v^3 C_p$

C. Galinos, T.J. Larsen, H.A. Madsen, U.S. Paulsen cgal@dtu.dk

13th Deep Sea Offshore Wind R&D Conference EERA DeepWind'2016

DTU Wind Energy Department of Wind Energy

DTU

Outline

- Introduction
- Wind turbine minimum design requirements
 - Design load cases
 - Definition considerations
- Wind Turbine models
- Simulation tool
- Results
- Conclusions

Introduction

Large scale VAWT development

Past: Sandia 34m test bed, Eole 4MW, FloWind 19m Present-Future: 5MW DeepWind concept, Nenuphar Vertiwind

Need to set the minimum design requirements for the structural integrity of VAWTs according to IEC/standardisation.

- IEC 61400-1 ed.3 standard sets minimum structural requirements for onshore wind turbines
 - The Design Load Cases (DLCs) are a combination of external conditions and wind turbine states
- DNV·GL similar criteria

Main research question

Are the IEC 61400-1, ed.3 DLCs applicable for vertical-axis wind turbines?

Design load cases

- Design situations
 - Normal power production
 - Emergency shut down
 - Parked rotor
- Not considered
 - Power production plus occurrence of fault
 - Start up and normal shut down
 - Transportation, assembly, maintenance and repair

Design situation	DL C		Wind condition	Other conditions
1) Power production	1.1	NTM	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	For extrapolation of extreme events
	1.2	NTM	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	
	1.3	ETM	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	
	1.4	ECD	$V_{hub} = V_r - 2 \text{ m/s}, V_r,$ $V_r + 2 \text{ m/s}$	
	1.5	EWS	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	
2) Power production plus occurrence of fault	2.1	NTM	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	Control system fault or loss of electrical network
	2.2	NTM	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	Protection system or preceding internal electrical fault
	2.3	EOG	$V_{hub} = V_r \pm 2 \text{ m/s and}$ V_{out}	External or internal electrical fault including loss of electrical network
	2.4	NTM	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	Control, protection, or electrical system faults including loss of electrical network
3) Start up	3.1	NWP	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	
	3.2	EOG	$V_{hub} = V_{in}, V_r \pm 2 \text{ m/s}$ and V_{out}	
	3.3	EDC	$V_{\rm hub}$ = $V_{\rm in}, V_{\rm r} \pm 2$ m/s and $V_{\rm out}$	
4) Normal shut down	4.1	NWP	$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	
	4.2	EOG	$V_{\rm hub}$ = $V_{\rm r} \pm 2$ m/s and $V_{\rm out}$	
5) Emergency shut down	5.1	NTM	$V_{hub} = V_r \pm 2$ m/s and V_{out}	
6) Parked (standing still or idling)	6.1	EWM	50-year recurrence period	
	6.2	EWM	50-year recurrence period	Loss of electrical network connection
	6.3	EWM	1-year recurrence period	Extreme yaw misalignment
	6.4	NTM	$V_{hub} < 0,7 V_{ref}$	
7) Parked and fault conditions	7.1	EWM	1-year recurrence period	
8) Transport, assembly, maintenance and repair	8.1	NTM	V _{maint} to be stated by the manufacturer	
	8.2	EWM	1-year recurrence period	

IEC 61400-1,ed.3 DLCs p35

19 January 2016

Considerations of the IEC 61400-1 ed.3 for VAWTs

- 1. The **hub-height** where the wind reference values are applied
 - In this study the rotor swept area (projected area) centre location at nominal rotor speed

Considerations of the IEC 61400-1 ed.3 for VAWTs

- 1. The **hub-height** where the wind reference values are applied
 - The rotor swept area (projected area) centre location at nominal rotor speed

2. The **rotor diameter** is used in equations for the definition of the wind characteristics

> The largest rotor diameter of the wind turbine at nominal rotor speed

Wind turbine models and aeroelastic code

- Simulation Tool: HAWC2 aeroelastic code
- Outputs: Turbine base bottom BM, blade root BM, blade deflection

Power production under NTM

• Extrapolated 50 year return period extremes VAWT-HAWT

- 1. Larger turbine base BM for VAWT
- 2. VAWT blade upper root BM similar with HAWT blade root

• Blade equivalent 1Hz fatigue VAWT-HAWT

- 1. Flapwise BM similar magnitude
- 2. VAWT edgewise BM much larger at high winds

Extreme Operating Gust VAWT

• Loads depend on the rotor orientation during the gust passage (rotor extends in 3dimensions)

Emergency Shut Down VAWT

- Mechanical brake
- Emergency shut down at 220s
- 0.5s before grid loss (zero generator torque)

Set-up

VAWT Parked Rotor under 50-year EWM

- 1. Idling rotor \rightarrow non reaching equilibrium rotor speed
- 2. Forced rotor rotation at low rotor speed \rightarrow Possible
- 3. Standing still (locked rotor at different orientations) \rightarrow Blade instabilities

VAWT Parked Rotor under 50-year EWM

- 1. Idling rotor \rightarrow non reaching equilibrium rotor speed
- 2. Forced rotor rotation at low rotor speed \rightarrow Possible
- 3. Standing still (locked rotor at different orientations) \rightarrow Blade instabilities

VAWT Parked Rotor under 50-year EWM

- 1. Idling rotor \rightarrow non reaching equilibrium rotor speed
- 2. Forced rotor rotation at low rotor speed \rightarrow Possible
- 3. Standing still (locked rotor at different orientations) \rightarrow Blade instabilities

• Sensitivity analysis on blade stiffness and damping for the standing still case \rightarrow Instabilities present

Comparison of DLCs VAWT-HAWT

- 1. VAWT extreme loads emerged from DLC 1.1 higher than the transient wind events
- 2. HAWT load results from transients more severe (DLC 2.3)

Conclusions

VAWT DLCs

- 1. The examined DLCs of IEC 61400-1, ed.3 are applicable for VAWTs
- 2. Definitions of equivalent hub height and rotor diameter were specified
- 3. The loads emerged from EOG depend on the rotor orientation gust passage combination (3D rotor in space)
- Parked standing still rotor under extreme winds (DLC 6.2) led to blade instabilities for specific rotor orientations and seems be design driver for VAWTs

Conclusions

VAWT-HAWT load comparison

- 1. Under power production with NTM both VAWT ultimate and 1 Hz fatigue base bottom bending moments were higher compared to the HAWT
- 2. The blade root loads are of similar magnitude at low and moderate winds between the two wind turbines under normal power production
- 3. DLC 1.1 simulations returned the highest base bottom and blade root loads for the VAWT where the DLC 2.3 and 5.1 for the HAWT

Thank You Questions ?

The present work is a result of the contributions within the INFLOW project, supported by the European Commission, Grant No 296043, and by the INFLOW beneficiaries: NENUPHAR(F), IFP(F), EDF(F), EIFAGE(F), FRAUNHOFER(D), VICINAY(E), VRYHOF(NL), and DTU(DK)