Investigation on FRT Method for VSC-HVDC with OWF: New Proposal NTNU

Wenye Sun, **Raymundo E. Torres**, Olimpo Anaya January 21, 2016

Outline

1 Motivation

- 2 Fault ride through problem
- 3 Reference system

Fault-ride Through Methods Chopper Resistor Power Setpoint Adjustment Active Current Reduction Offshore Voltage Reduction

5 Proposed Method for FRT

6 Summary

7 Conclusion

Background

Keywords

- Fast development of wind energy in last 20 years
- At end of 2014, total wind power installed around the world was 370 GW.
- The trend is going to offshore, because of good wind condition and less visual impact.
- VSC-HVDC transmission is the latest technology for connecting distant offshore wind farms.

FRT problem

- When a fault occurs at the ac grid, the onshore converter is unable to transmit all the active power to the ac grid, however OWF still inject active power to offshore converter
- This results in power imbalance that will charge the capacitance in the dc-link.
- Without any actions, this will result in a fast increase of the dc voltage, which may damage the HVDC equipment.

Reference system

Offshore converter controller

$\ensuremath{\mathbf{VSC}\xspace{-}HVDC}$ - Offshore converter controller

Control Objective

Generate a three-phase voltage with constant amplitude and frequency for offshore wind farm grid.

Figure : Offshore converter controller

Onshore converter controller

VSC-HVDC - Onshore converter control design

Control Objective

- Regulate dc-link voltage and reactive power.
- Provide reactive power compensation during onshore grid fault.

Figure : Onshore converter control design

Wind Turbine - GSC control design

Wind Turbine - GSC control design

Control Objective

Extract the maximum power from wind turbine.

Figure : Generator side converter control design

Wind Turbine - ACGSC control design

Wind Turbine - ACGSC control design

Control Objective

Regulate the back-to-back converter dc voltage and reactive power.

Figure : AC grid side converter control design

Wind Turbine - Pitch control

Control Objective

Limit the power output at rated value.

Figure : Pitch control design

FRT Methods

A brief review of the FRT methods.

- 1 Chopper Resistor
- 2 Power Setpoint Adjustment
- **3** Active Current Reduction
- **4** Offshore Voltage Reduction

FRT Method I- Chopper Resistor

Work principle of chopper resistor

A dc chopper consists of a dc resistor directly controlled through a power electronics switch, e.g. GTO, IGBT. The main function of dc chopper is to limit the dc voltage by dissipating the excess power as heat.

FRT Method II - Power Setpoint Adjustment

Work principle of Power setpoint adjustment method

The principle of this method is to reduce the power setpoint of each wind turbine when onshore fault occurs.

$$K_{p} = \frac{P_{max}, OC}{P_{o}, WT}$$

FRT Method III - Active Current Reduction

Work principle of active current reduction method

The WT output power is blocked via wind turbine ACGSC controller using a reduction factor. The reduction factor decreases linearly as the voltage increases up to an specific upper limit.

FRT Method IV - Offshore Voltage Reduction

Work principle of offshore voltage reduction

This method calculates the required droop by measuring the dc voltage at the offshore converter, so it is a communication-less scheme with a fast response.

$$V_{ac} = V_{ac_{ref}} - k_v (V_{dc_{ref}} - V_{dc})$$

Proposed method FRT

Work principle of the proposed method

When a fault occurs, the dc voltage at the offshore converter will increase. This signal activates the offshore converter controller to control offshore ac voltage magnitude, implemented by block VRC.

Proposed method FRT

Work principle of the proposed method

At the same time, wind turbines detect the offshore ac voltage magnitude reduction. Accordingly, a power droop factor is generated and sent to GSC to de-load active power.

Proposed FRT Method

Figure : a)onshore ac voltage b)onshore active power c) onshore dc voltage d)onshore reactive power e) offshore ac voltage f)offshore active power g) dc-link WF h)active power turbine

FRT Methods - Summary

	Fault ride through is achieve by	Advantages	Disadvantage
Chopper re- sistor	External resistor	Straight forward	Extra investment
Power	Signal to GSC and	WF controller mod-	Communication de-
setpoint adjustment	reducing wind tur- bines power	ification	lay and rely on reli- ability of communi- cation
Active cur-	Signal to ACGSC	WF controller mod-	Communication de-
rent control	and reducing wind	ification	lay and electrical
	turbines power		stress
Offshore	Decreasing offshore	No communication	Electrical stress on
voltage	grid voltage and	delay, very fast re-	wind turbine drive
reduction	blocking output	duction of OWFs	train
	power from OWF	power	
Proposed	Decreasing offshore	No communication	The performance of
method	grid voltage and re-	delay, very fast re-	this method is af-
	ducing the output	duction of OWFs	fected by the mea-
	power form each	output power, no	surement of OWF
	wind turbine	electrical stress	voltage.

Conclusion

This paper proposed a FRT method for VSC-HVDC connected OWF system. There are some advantages compared with the described methods:

- The power reduction factor is generated by wind turbine itselft, so the communication delay is eliminated.
- This proposed method combines offshore voltage reduction method and wind turbine power set-point reduction method, so the dc voltage increase in back-to-back converter is reduced. Additionally, the electric stress on wind turbine is reduced.

- This work was developed by Wenye Sun in his master thesis
- The European Wind Energy Master consortium is composed of four world leading universities in wind energy and offshore wind energy research and education: Delft university, DTU, NTNU and Carl von Ossietzky Universitt Oldenburg.
- Currently, Wenye Sun works for ABB, China.

Thank You

Questions?

Wenye Sun, Raymundo E. Torres, Olimpo Ar

FRT methods