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Motivation for the study 

• Increased number of HVDC connected offshore wind farms in the North Sea 

• Growing interest in multi-terminal dc grids (MTDC) will lead to hybrid AC/DC 
power systems 

• Several research has been conducted on primary frequency support from 
Offshore wind farm both through HVDC and MTDC 

• Focus has been on frequency of the grid under study and does not consider 
the disturbances introduced in the other grids in the hybrid system 
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Frequency support from Offshore Wind through HVDC 

Onshore VSC 

• Onshore frequency signaling to OWF methods 
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Frequency support from Offshore Wind via MTDC (1) 

• DC voltage droop control at all terminals 
• Power imbalance is shared by all terminals 
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Frequency support from Offshore Wind via MTDC (2) 

• Frequency support can be provided by adding 
frequency droop 

• Frequency support from offshore wind farm  

– AC frequency change signaling through Vdc 

– auxiliary controllers both at onshore VSC and OWF VSC 

• All terminals with DC droop controller participate 
in the frequency support 
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Study System 

• Two multi-machine AC grids 
– Synchronous generators 
– Automatic voltage regulators, governors 

and Power System Stabilizers(PSS) 

• Offshore Wind farm 
– No internal wind farm model 
– Stiff bus behind offshore converter 

• DC grid 
– Symmetrical monopolar ±400kV three-

terminals VSC-based MTDC 
– π model cables with lumped parameters 

• DIgSILENT PowerFactory 
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Study cases 

• Loss of load in either of the grids is used to simulate frequency disturbance 
   Terminal #1 Terminal #2 Terminal #3 

Case 1 Frequency + Vdc droop Vdc droop Vdc as freq. change signal 
Case 2 Frequency + Vdc droop Vdc droop Frequency signal via communication  
Case 3 Frequency + Vdc droop Frequency + Vdc droop Vdc as freq. change signal 
Case 4 Frequency + Vdc droop Frequency + Vdc droop Frequency signal via communication  
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Results (1) 
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Results (2) 
• Loss of load in Grid 2 
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Results (3) 
• Loss of load in Grid 1 
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Results (4) 
• Loss of load in Grid 2 
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Conclusion 

• By coordinating converter controllers at offshore wind farm and one ac grid, it 
is possible to avoid disturbance in other AC grids connected to the MTDC 

• However, the proposed method works when only one terminal is getting 
frequency support and the remaining AC grid connected MTDC terminals are 
operating in dc droop or constant power control mode 

• If more than one AC grids are going to receive frequency support through 
MTDC, then distributed dc voltage and frequency droop control is a better 
control method 
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