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Motivation

Strathclyde
Engineering

« High penetration levels of wind power imposes its contribution to voltage
stability

« Solving challenges of the utilization of Net-OP tool results to prepare a
highly detailed dynamic model using PSS®E

* Investigate the influence of HVDC links connecting the wind farms
clusters
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Grid code and ancillary services S,,

Grid Code specifies the technical requirements and obligations on the connection
to, and utilization of, certain transmission system(s). This system could be national
or international (e.g. unified European grid)

Ancillary services provided by power plants and Grid Code requirements are
two sides of one coin
A

Voltage: Low voltage ride-
through, post dips support

Frequency: Primary and secondary
responses, reserve management

A
Power factor and reactive power issues
y— N
Wind power short and long term forecasting, wind power regulation
A
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Grid code and ancillary services
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Implementation challenges

University of

Strathclyde
Set generation capacities No Power flow
Net-OP results 9 P
and load demands converges?

Using PSS®E

Technical
survey

|

Sketch single line diagram

I

Set lines’ ratings and impedances

|

Set wind clusters actual production
(within the capacity factors’ limits)

|

Select DC links types and control method

l Yes

Design case studies
(task: check grid
code compliance)

|

Perform dynamic
simulations

|

Analyse results

Flowchart: from Net-OP tool *.RAW file to PSS®E dynamic model
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Implementation challenges S

* In PSS®E, swing bus could not be connected to a DC link — a dummy
bus is added to connect the main bus to the DC link(s)

« Setting the rated voltage and power capacities of DC links

* Net-OP does not provide a *.DYR file, thus dynamic models are
assigned to all system components from scratch

* Integrating controllers’ types of HVDC links (assumed as CDCT4)
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Results— voltage response -
compared to grid code Strathclyde
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Results— response of generators’
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Res_,ul_ts— samples for power flow B
variations Strathclyde
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Conclusions

Strathclyde
Engineering

« The integration of far future wind clusters does not violate the grid
codes during voltage dips

 HVDC failed in some cases to provide the required reactive current to
the nearby faulted bus because the converters’ models in PSS®E are
not equipped with the suitable control methods

- Efforts are required to obtain the real (i.e. generic) values for all the
parameters applied in the PSS®E model

« Industrial parties are encouraged to publish samples from real data of
related components (e.g. HVDC links converters)

« Comprehensive efforts are required to design new grid codes which
specify clearly the role of HVDC links in providing ancillary services
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Appendix— numerical values of the

R
University of
parameters of HVYDC controllers S ye
VSCDCT
J Tpo_1, Time constant of active power order controller, 0.05 J+14 AC_VC_Limits_2, Reactive power limit for ac voltage 0
sec (VSC # 1). ' control, pu on converter MVA rating
J+1 AC_VC_Limits_1, Reactive power limit for ac voltage 0 J+15 AC_Vctrl_kp_2, AC Voltage control proportional gain, 54
control, pu on converter MVA rating converter MVA rating/BASEKV (VSC#2). '
J+2 AC_Vectrl_kp_1, AC Voltage control proportional gain, 24 J+16 Tac_2 > 0.0, Time constant for AC voltage Pl integral, 0.01
converter MVA rating/BASEKV (VSC # 1). ' sec (VSC#2). When 0, VSC#2 is ignored. '
J+3 Tac_1 > 0, Time constant for AC voltage PI integral, 001 J+17 Tacm_2, Time constant of the ac voltage transducer, 0.05
sec (VSC#1). ' sec (VSC#2), must be longer than simulation step '
J+4 Tacm_1, Time constant of the ac voltage transducer, 0.05 J+18 lacmax_2, Current Limit, pu on converter MVA rating 1
sec (VSC # 1), must be longer than simulation step ' (VSC#2).
J+5 lacmax_1, Current Limit, pu on converter MVA rating 1 J+19 Droop_2, AC Voltage control droop, converter MVA 0
(VSCH#1). rating/BASEKV (VSC#2).
‘r];tiGng/rl(B)Xg_Elk\? %V\ég?f)? el e, ComteiErii 0 J+20 VCMX_2, Max. VSC Bridge Internal Voltage (VSC#2). 1.07
J+7 VCMX_1, Max. VSC Bridge Internal Voltage (VSC#1).  1.07 \r]e+azclt (ﬁiﬁﬁgg\/—jﬁzroli/?\'/ztl‘r;ﬁ?;tg?g‘ézg‘e ac series 0.17
J+8 XREACT _1 > 0.0, Pu reactance of the ac series 017 J+22 QMAX_2, Max. system reactive limit in MVAR 240
reactor on converter MVA rating (VSC#1). ' (VSC#2).
J+9 QMAX_1, Max. system reactive limits in MVAR 240 J+23 QMIN_2, Min. system reactive limits in MVAR -740
(VSCH#1) (VSC#2).
J+10 QMIN_1, Min. system reactive limits in MVAR -740 J+24 AC_VC_KT_2, feedback from reactive power limiter to 12
(VSCH#1). ac voltage controller (VSC#2) '
J+11 AC_VC_KT_1, feedback from reactive power limiter 12 J+25 AC_VC_KTP_2, feedback from current order limiter to 1
to ac voltage controller (VSC#1). ' ac voltage controller (VSC#2).
J+12 AC_VC_KTP_1, feedback from current order limiter 1 J+26 Tpo_DCL, Time constant of the power order 0.05
to ac voltage controller (VSC#1). controller, sec (DC Line). ’
J+13 Tpo_2, Time constant of active power order 0.05 J+27 Tpo_lim, Time constant of the power order limit 0.05
controller, sec (VSC#2). ' controller, sec (DC Line). '
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